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Wavelet Toolbox Product Description

Analyze and synthesize signals and images using wavelets

Wavelet Toolbox provides functions and apps for analyzing and synthesizing signals,
images, and data that exhibit regular behavior punctuated with abrupt changes. The
toolbox includes algorithms for continuous wavelet transform (CWT), scalogram, and
wavelet coherence. It also provides algorithms and visualizations for discrete wavelet
analysis, including decimated, nondecimated, dual-tree, and wavelet packet transforms.
In addition, you can extend the toolbox algorithms with custom wavelets.

The toolbox lets you analyze how the frequency content of signals changes over time and
reveals time-varying patterns common in multiple signals. You can perform
multiresolution analysis to extract fine-scale or large-scale features, identify
discontinuities, and detect change points or events that are not visible in the raw data.
You can also use Wavelet Toolbox to efficiently compress data while maintaining
perceptual quality and to denoise signals and images while retaining features that are
often smoothed out by other techniques.

Key Features

*  Continuous wavelet transform (CWT), scalogram, and wavelet coherence

* Discrete wavelet analysis including decimated, nondecimated, dual-tree, and wavelet
packet transforms

+ Signal and image denoising with scale or interval dependent thresholding

+  Compression and reconstruction of signals and images including matching pursuit
algorithms

+ Perfect reconstruction filter banks using coiflets, biorthogonal spline, Daubechies, and
Fejer-Korovkin filters

+ Lifting method for constructing custom wavelets
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Installing Wavelet Toolbox Software

To install this toolbox on your computer, see the appropriate platform-specific MATLAB®
installation guide. To determine if the Wavelet Toolbox software is already installed on
your system, check for a subfolder named wavelet within the main toolbox folder.

Wavelet Toolbox software can perform signal or image analysis. For indexed images or
truecolor images (represented by m-by-n-by-3 arrays of uint8), all wavelet functions use
floating-point operations. To avoid Out of Memory errors, be sure to allocate enough
memory to process various image sizes.

The memory can be real RAM or can be a combination of RAM and virtual memory. See
your operating system documentation for how to configure virtual memory.

System Recommendations

While not a requirement, we recommend you obtain Signal Processing Toolbox™ and
Image Processing Toolbox™ software to use in conjunction with the Wavelet Toolbox
software. These toolboxes provide complementary functionality that give you maximum
flexibility in analyzing and processing signals and images.

This manual makes no assumption that your computer is running any other MATLAB
toolboxes.

Platform-Specific Details

Some details of the use of the Wavelet Toolbox software may depend on your hardware or
operating system.

Windows Fonts

We recommend you set your operating system to use “Small Fonts.” Set this option by
clicking the Display icon in your desktop's Control Panel (accessible through the
Settings > Control Panel submenu). Select the Configuration option, and then use
the Font Size menu to change to Small Fonts. You'll have to restart Windows® for this
change to take effect.

Fonts for Non-Windows Platforms

We recommend you set your operating system to use standard default fonts.

1-3



1 Getting Started with Wavelet Toolbox Software

However, for all platforms, if you prefer to use large fonts, some of the labels in the
Wavelet Analyzer app figures may be illegible when using the default display mode of the
toolbox. To change the default mode to accept large fonts, use the wtbxmngr function.
(For more information, see either the wtbxmngr help or its reference page.)

Mouse Compatibility

Wavelet Toolbox software was designed for three distinct types of mouse control.

Left Mouse Button Middle Mouse Button Right Mouse Button
Make selections. Activate Display cross-hairs to show Translate plots up and
controls. position-dependent information. down, and left and right.

© ® ®

® e ®)
@ Shit+ @ Option +®

Note The functionality of the middle mouse button and the right mouse button can be
inverted depending on the platform.
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What is a Wavelet?

A wavelet is a waveform of effectively limited duration that has an average value of zero
and nonzero norm.

Many signals and images of interest exhibit piecewise smooth behavior punctuated by
transients. Speech signals are characterized by short bursts encoding consonants
followed by steady-state oscillations indicative of vowels. Natural images have edges.
Financial time series exhibit transient behavior, which characterize rapid upturns and
downturns in economic conditions. Unlike the Fourier basis, wavelet bases are adept at
sparsely representing piecewise regular signals and images, which include transient
behavior.

Compare wavelets with sine waves, which are the basis of Fourier analysis. Sinusoids do
not have limited duration — they extend from minus to plus infinity. While sinusoids are
smooth and predictable, wavelets tend to be irregular and asymmetric.

VL

Sine Wave Wavelket [db10)

Fourier analysis consists of breaking up a signal into sine waves of various frequencies.
Similarly, wavelet analysis is the breaking up of a signal into shifted and scaled versions
of the original (or mother) wavelet.

Just looking at pictures of wavelets and sine waves, you can see intuitively that signals
with sharp changes might be better analyzed with an irregular wavelet than with a
smooth sinusoid.

It also makes sense that local features can be described better with wavelets that have
local extent. The following example illustrates this for a simple signal consisting of a sine
wave with a discontinuity.

Localize Discontinuity in Sine Wave
This example shows wavelet analysis can localize a discontinuity in a sine wave.

Create a 1-Hz sine wave sampled at 100 Hz. The duration of the sine wave is one second.

The sine wave has a discontinuity at ! = 0.5 seconds.
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t = linspace(0,1,100)"';

b4 sin (2*pi*t);

x1l = x-0.15;

y = zeros(size(x));

y(l:length(y)/2) = x(l:length(y)/2);
y(length(y) /2+1:end) = x1(length(y)/2+1:end);
stem(t,y, 'markerfacecolor', [0 0 17);

xlabel ('Seconds') ;

ylabel ('Amplitude');

Amplitude
o

1

=

tn
T

1] 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Seconds

Obtain the nondecimated discrete wavelet transform of the sine wave using the 'sym2"
wavelet and plot the wavelet (detail) coefficients along with the original signal.
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[swa,swd] = swt(y,1, ' 'sym2'");

subplot (211)

stem(t,y, 'markerfacecolor', [0 0 17);
title('Original Signal');

subplot (212)

stem(t, swd, 'markerfacecolor', [0 0 11);
title('Level 1 Wavelet Coefficients'):;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Level 1 Wavelet Coefficients
D_ 1 T T T T T T T T T

0.05
L ]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Compare the Fourier coefficient magnitudes for the 1-Hz sine wave with and without the

discontinuity.

dftsig = fft([x yl):
dftsig = dftsig(l:length(y)/2+1,:);
df = 100/length(y);

1-7
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freq = 0:df:50;

stem(freq,abs (dftsiqg));

xlabel ('Hz'"); ylabel ('"Magnitude');

legend('sine wave', 'sine wave with discontinuity'):;

Original Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ED T T T T T T T T T
]
{ —— sine wave
o a0k 20 sine wave with discontinuity | |
=
=
@
= 20 -
e
0 5 10 15 20 25 30 35 40 45 50

There is minimal difference in the magnitudes of the Fourier coefficients. Because the
discrete Fourier basis vectors have support over the entire time interval, the discrete

Fourier transform does not detect the discontinuity as efficiently as the wavelet
transform.

Compare the level 1 wavelet coefficients for the sine wave with and without the
discontinuity.
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[swax, swdx] = swt(x,1,'sym2");

subplot (211)

stem(t,swd); title('Sine Wave with Discontinuity (Wavelet Coefficients)"');
subplot (212)
stem(t, swdx); title('Sine Wave (Wavelet Coefficients)');

Sine Wave with Discontinuity (Wavelet Coefficients)
D_ 1 T T T T T T T T T

A AR AR

AR,

0.3

0.4

0.5

0.6

0.7

0.8

Sine Wave (Wavelet Coefficients)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The wavelet coefficients of the two signals demonstrate a significant difference. Wavelet
analysis 1s often capable of revealing characteristics of a signal or image that other
analysis techniques miss, like trends, breakdown points, discontinuities in higher
derivatives, and self-similarity. Furthermore, because wavelets provide a different view
of data than those presented by Fourier techniques, wavelet analysis can often
significantly compress or denoise a signal without appreciable degradation.

1-9
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Choose a Wavelet

1-10

The type of wavelet analysis best suited for your work depends on what you want to do
with the data. This topic focuses on 1-D data, but you can apply the same principles to 2-
D data.

Time-Frequency Analysis

If your goal is to perform a detailed time-frequency analysis, choose the continuous
wavelet transform (CWT).

* The CWT is superior to the short-time Fourier transform (STFT) for signals in which
the instantaneous frequency grows rapidly, such as in a hyperbolic chirp.

* The CWT is good at localizing transients in nonstationary signals.

In terms of implementation, scales are discretized more finely in the CWT than in the
discrete wavelet transform (DWT). See “Continuous and Discrete Wavelet Transforms”
on page 1-45 for more details.

Wavelets Supported for Time-Frequency Analysis

To obtain the continuous wavelet transform of your data, use the cwt function. You can
use the wname argument of this function to specify the type of wavelet best suited for
your data. By default, cwt uses the generalized Morse wavelet family. This family is
defined by two parameters. You can vary the parameters to recreate many commonly
used wavelets.

Wavelet Features wname

Generalized Morse Wavelet |Can vary two parameters to | 'morse’' (default)
change time and frequency

spread

Analytic Morlet Wavelet Provides good time 'amor'
localization

Bump Wavelet Provides good frequency "bump '
localization

All the wavelets in the table are analytic. Analytic wavelets are wavelets with one-sided
spectra, and are complex valued in the time domain. These wavelets are a good choice for
obtaining a time-frequency analysis using the CWT. Because the wavelet coefficients are
complex valued, the CWT provides phase information. cwt supports analytic and anti-
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analytic wavelets. See “Time-Frequency Analysis with the Continuous Wavelet
Transform” for additional information.

Multiresolution Analysis

If you want to obtain a multiresolution analysis, or if you are working with a sparse
representation of the data, then choose the discrete wavelet transform (DWT).

Energy Preservation

If preserving energy in the analysis stage is important, you must use an orthogonal
wavelet. An orthogonal transform preserves energy. Consider using an orthogonal
wavelet with compact support. Keep in mind that except for the Haar wavelet,
orthogonal wavelets with compact support are not symmetric. The associated filters have
nonlinear phase. This table lists supported orthogonal wavelets. You can use the wname
argument in all the discrete wavelet transform functions to specify the type of wavelet
best suited for your data. See wavemngr ('read') for all wavelet family names.

Orthogonal Wavelet |Features whame See Also
Coiflet Scaling function and |'coifN' forN = 1, |N/A
wavelets have same |2, ..., 5
number of vanishing
moments
Daubechies Nonlinear phase; 'dbN' forN = 1, dbaux, Extremal
energy concentrated (2, ..., 45 Phase Wavelet
near the start of Coefficients on page
their support 1-23
Fejér-Korovkin Filters constructed "fkN' forN = 4, N/A
to minimize the 6, 8, 14, 18, 22

difference between a
valid scaling filter
and the ideal sinc
lowpass filter; are
especially useful in
discrete (decimated
and undecimated)
wavelet packet
transforms.

1-11



1 Getting Started with Wavelet Toolbox Software

1-12

Orthogonal Wavelet |Features wname See Also

Haar Symmetric; special | 'haar' ("dbl"') N/A
case of Daubechies;
useful for edge

detection
Symlet Least asymmetric; 'symN' for N = 2, |symaux, Symlets and
nearly linear phase |3, ..., 45 Phase on page 1-17

Use waveinfo to learn more about individual wavelet families. For example,
waveinfo ('db"').

Depending on how you address border distortions, the DWT might not conserve energy in
the analysis stage. However, the maximal overlap DWT (modwt) does conserve energy.
See dwtmode and “Border Effects” for more information.

Feature Detection

If you want to find closely spaced features, choose wavelets with smaller support, such as
haar, db2, or sym2. The support of the wavelet should be small enough to separate the
features of interest. Wavelets with larger support tend to have difficulty detecting closely
spaced features. Using wavelets with large support can result in coefficients that do not
distinguish individual features. For an example, see “Effect of Wavelet Support on Noisy
Data” on page 1-25. If your data has sparsely spaced transients, you can use wavelets
with larger support.

Analysis of Variance

If your goal is to conduct an analysis of variance, the maximal overlap discrete wavelet
transform (MODWT) is suited for the task. The MODWT is a variation of the standard
DWT.

* The MODWT conserves energy in the analysis stage.

+ The MODWT partitions variance across scales. For examples, see “Wavelet Analysis
of Financial Data” and “Wavelet Changepoint Detection”.

* The MODWT requires an orthogonal wavelet, such as a Daubechies wavelet or
symlet.

* The MODWT is a shift-invariant transform. Shifting the input data does not change
the wavelet coefficients. The coefficients are shifted as well. The decimated DWT is
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not shift invariant. Shifting the input changes the coefficients and can redistribute
energy across scales.

See modwt and modwtmra for more information. See also “Comparing MODWT and
MODWTMRA” on page 1-29.

Redundancy

If your work requires representing a signal with minimal redundancy, use the DWT. If
your work requires a redundant representation, use the MODWT. For an example, see
“Continuous and Discrete Wavelet Analysis of Frequency Break”.

Denoising

An orthogonal wavelet, such as a symlet or Daubechies wavelet, is a good choice for
denoising signals. A biorthogonal wavelet can also be good for denoising images.

* An orthogonal transform does not color white noise. If white noise is provided as input
to an orthogonal transform, the output is white noise. Performing a DWT with a
biorthogonal wavelet colors white noise.

* An orthogonal transform preserves energy.

To learn if a wavelet family is orthogonal, use waveinfo. For example,
waveinfo ('sym').

The sym4 wavelet is the default wavelet used in the wdenoise function and the Wavelet
Signal Denoiser app.

Compression

If your work involves signal or image compression, consider using a biorthogonal

wavelet. This table lists the supported biorthogonal wavelets with compact support. You
can use the wname argument in all the discrete wavelet transform functions to specify the
biorthogonal wavelet best suited for your data.

1-13
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Biorthogonal Wavelet

Features

whame

Biorthogonal Spline

Compact support;
symmetric filters; linear
phase

'biorNr.Nd' where Nr and
Nd are the numbers of
vanishing moments for the
reconstruction and
decomposition filters,
respectively; see

waveinfo ('bior'") for
supported values

Reverse Biorthogonal Spline

Compact support;
symmetric filters; linear
phase

'rbioNd.Nr' where Nr and
Nd are the numbers of
vanishing moments for the
reconstruction and
decomposition filters,
respectively; see

waveinfo ('rbio'") for
supported values

Having two scaling function-wavelet pairs, one pair for analysis and another for
synthesis, is useful for compression.

* The filters are symmetric and have linear phase.

* The wavelets used for analysis can have many vanishing moments. A wavelet with N
vanishing moments is orthogonal to polynomials of degree N-1. Using a wavelet with
many vanishing moments results in fewer significant wavelet coefficients.

Compression is improved.

*  The dual wavelets used for synthesis can have better regularity. The reconstructed

signal is smoother.

Using an analysis filter with fewer vanishing moments than a synthesis filter can
adversely affect compression. For an example, see “Image Reconstruction with
Biorthogonal Wavelets” on page 1-36.

When using biorthogonal wavelets, energy is not conserved at the analysis stage. See
“Orthogonal and Biorthogonal Filter Banks” for additional information.
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General Considerations

Wavelets have properties that govern their behavior. Depending on what you want to do,
some properties can be more important.

Orthogonality

If a wavelet is orthogonal, the wavelet transform preserves energy. Except for the Haar
wavelet, no orthogonal wavelet with compact support is symmetric. The associated filter
has nonlinear phase.

Vanishing Moments

A wavelet with N vanishing moments is orthogonal to polynomials of degree N-1. For an
example, see “Wavelets and Vanishing Moments” on page 1-40. The number of
vanishing moments and the oscillation of the wavelet have a loose relationship. The
greater number of vanishing moments a wavelet has, the more the wavelet oscillates.

Names for many wavelets are derived from the number of vanishing moments. For
example, db6 is the Daubechies wavelet with six vanishing moments and sym3 is the
symlet with three vanishing moments. For coiflet wavelets, coi £3 is the coiflet with six
vanishing moments. For Fejér-Korovkin wavelets, £k8 is the Fejér-Korovkin wavelet
with a length 8 filter. Biorthogonal wavelet names are derived from the number of
vanishing moments the analysis wavelet and synthesis wavelet each have. For instance,
bior3.5 is the biorthogonal wavelet with three vanishing moments in the synthesis
wavelet and five vanishing moments in the analysis wavelet. To learn more, see
waveinfo and wavemngr.

The number of vanishing moments also affects the support of a wavelet. Daubechies
proved that a wavelet with N vanishing moments must have a support of at least length
2N-1.

Regularity

Regularity is related to how many continuous derivatives a function has. Intuitively,
regularity can be considered a measure of smoothness. To detect an abrupt change in the
data, a wavelet must be sufficiently regular. For a wavelet to have N continuous
derivatives, the wavelet must have at least N+1 vanishing moments. See “Detecting
Discontinuities and Breakdown Points” for an example. If your data is relatively smooth
with few transients, a more regular wavelet might be a better fit for your work.
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See Also

Wavelet Signal Denoiser | dwtmode | waveinfo | wavemngr | wdenoise

More About

. Understanding Wavelets, Part 1: What Are Wavelets
. Understanding Wavelets, Part 2: Types of Wavelet Transforms

. Understanding Wavelets, Part 3: An Example Application of the Discrete Wavelet
Transform

. Understanding Wavelets, Part 4: An Example Application of the Continuous
Wavelet Transform


https://www.mathworks.com/videos/understanding-wavelets-part-1-what-are-wavelets-121279.html
https://www.mathworks.com/videos/understanding-wavelets-part-2-types-of-wavelet-transforms-121281.html 
https://www.mathworks.com/videos/understanding-wavelets-part-3-an-example-application-of-the-discrete-wavelet-transform-121284.html
https://www.mathworks.com/videos/understanding-wavelets-part-3-an-example-application-of-the-discrete-wavelet-transform-121284.html
https://www.mathworks.com/videos/understanding-wavelets-part-4-an-example-application-of-continuous-wavelet-transform-121282.html
https://www.mathworks.com/videos/understanding-wavelets-part-4-an-example-application-of-continuous-wavelet-transform-121282.html

Least Asymmetric Wavelet and Phase

Least Asymmetric Wavelet and Phase

For a given support, the orthogonal wavelet with a phase response that most closely
resembles a linear phase filter is called least asymmetric. Symlets are examples of least
asymmetric wavelets. They are modified versions of the classic Daubechies db wavelets.
In this example you will show that the order 4 symlet has a nearly linear phase response,
while the order 4 Daubechies wavelet does not. This example requires the Signal
Processing Toolbox.

First plot the order 4 symlet and order 4 Daubechies scaling functions. While neither is
perfectly symmetric, note how much more symmetric the symlet is.

[phi sym,~,xval sym]=wavefun('sym4',10);
[phi db,~,xval dbl=wavefun('db4',10);
subplot (2,1,1)

plot (xval sym,phi sym)

title('sym4 - scaling function')

grid on

subplot (2,1,2)

plot (xval db,phi db)

title('db4 - scaling function')

grid on
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1.5

0.5

sym4 - scaling function

1-18

Generate the filters associated with the order 4 symlet and Daubechies wavelets.

scal sym = symaux (4,sqrt(2));
scal db = dbaux(4,sqrt(2));

Compute the frequency response of the scaling synthesis filters.

[h sym,w sym] = fregz(scal sym);
[h db,w db] = fregz(scal db);

To avoid visual discontinuities, unwrap the phase angles of the frequency responses and
plot them. Note how well the phase angle of the symlet filter approximates a straightline.

h sym u = unwrap(angle(h sym));
h db u = unwrap (angle(h db));



Least Asymmetric Wavelet and Phase

Fhase (radians)

figure

plot (w_sym/pi,h sym u,'.")

hold on

plot(w sym([1 end])/pi,h_sym_u([l end]),'r")
grid on

xlabel ('"Normalized Frequency ( x \pi rad/sample)')

ylabel ('Phase (radians)')

legend ('phase angle of frequency response', 'straight line')
title('Symlet Order 4 - Phase Angle')

Symlet Order 4 - Phase Angle

. phase angle of frequency response
straight line

A2 1

0 01 02 03 04 05 06 07 08 09 1
Mormalized Frequency ( x « rad/sample)
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figure;

plot(w db/pi,h db u,"'.")

hold on

plot(w db([1 end])/pi,h_db_u([l end]),'r")

1-19



1 Getting Started with Wavelet Toolbox Software

1-20

Fhase (radians)

grid on

xlabel ('"Normalized Frequency ( x \pi rad/sample)')

ylabel ('Phase (radians)')

legend ('phase angle of frequency response', 'straight line')
title ('Daubechies Order 4 - Phase Angle')

Daubechies Order 4 - Phase Angle

0 T T

. phase angle of frequency response
straight line

0 01 02 03 04 05 06 07 08 09 1
Mormalized Frequency ( x « rad/sample)

The sym4 and db4 wavelets are not symmetric, but the biorthogonal wavelet is. Plot the
scaling the function associated with the bior3.5 wavelet. Compute the frequency response
of the synthesis scaling filter for the wavelet and verify that it has linear phase.

[~,~,phi bior r,~,xval bior]=wavefun('bior3.5',10);
figure
plot(xval bior,phi bior r)



Least Asymmetric Wavelet and Phase

title('bior3.5 - scaling function')

grid on
bior3.5 - scaling function
DB T T T T T
0.7 ,"/\ 1
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D 1 I/ 1 1 1
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[LoD bior,HiD bior,LoR bior,HiR bior] = wfilters('bior3.5");
[h bior,w bior] = freqz(LoR bior);
h bior u = unwrap(angle(h bior));
figure
L)

plot (w bior/pi,h bior u,’
hold on

plot (w bior ([l end])/pi,h bior u([l end]),'r")
grid on

xlabel ('"Normalized Frequency ( x \pi rad/sample)')
ylabel ('Phase (radians)")
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legend ('phase angle of frequency response', 'straight line')
title('Biorthogonal 3.5 - Phase Angle')

Biorthogonal 3.5 - Phase Angle

. phase angle of frequency response
straight line

Fhase (radians)

A4

-18
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mormalized Frequency ( x « rad/sample)

See Also

dbaux | symaux
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Extremal Phase

This example demonstrates that for a given support, the cumulative sum of the squared
coefficients of a scaling filter increase more rapidly for an extremal phase wavelet than
other wavelets.

First, set the order to 15 and generate the scaling filter coefficients for the Daubechies
wavelet and Symlet. Both wavelets have support of length 29.

n = 15;
[~,~,LoR db,~] = wfilters('dbl5");
[~,~,LoR_sym,~] = wfilters('syml5");

Next, generate the scaling filter coefficients for the order 5 Coiflet. This wavelet also has
support of length 29.

[~,~,LoR coif,~] = wfilters('coif5");

(5]

Confirm the sum of the coefficients for all three wavelets equals *
sgrt (2) -sum(LoR_db)

ans = 2.2204e-16

sgrt (2) -sum (LoR_sym)

ans = 0

sqrt (2) -sum(LoR coif)

ans = 2.2204e-16

Plot the cumulative sums of the squared coefficients. Note how rapidly the Daubechies
sum increases. This is because its energy is concentrated at small abscissas. Since the
Daubechies wavelet has extremal phase, the cumulative sum of its squared coefficients
increases more rapidly than the other two wavelets.

plot (cumsum(LoR db."2), 'rx-")

hold on

plot (cumsum(LoR sym.”"2), 'mo-"')

plot (cumsum(LoR coif.”2), 'b*-")

legend ('Daubechies', 'Symlet', 'Coiflet"')
title('Cumulative Sum')
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Cumulative Sum

See Also

dbaux | symaux

—#*— Daubechies
—<— Symlet
# —F— Coiflet g
25 30



Effect of Wavelet Support on Noisy Data

Effect of Wavelet Support on Noisy Data

In this example you demonstrate an instance of discontinuities in noisy data being
represented more sparsely using a Haar wavelet than when using a wavelet with larger
support. This example requires Signal Processing Toolbox.

Create a noisy square wave with 512 samples. Plot the square wave.

n = 512;

t = 0:0.001:(n*0.001)-0.001;

yn = square (2*pi*10*t)+0.02*randn (size(t));
plot (yn)

grid on

title('Noisy Signal')

Noisy Signal

1.5 T T

1 Pt iy P T PR o .

0.5 7

0 100 200 300 400 500 G600
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Obtain the maximal overlap discrete wavelet transform (MODWT) of the signal using the
haar wavelet. The haar wavelet has a support of length equal to 1

modhaar = modwt (yn, 'haar'");

Obtain the multiresolution analysis from the haar MODWT matrix and plot the first-
level details.

mrahaar = modwtmra (modhaar, 'haar');

figure

hs = stem(mrahaar(1l,:));

grid on

hs.Marker = 'none';

hs.ShowBaseLine = 'off';

title('First-Level MRA Details Using Haar Wavelet')
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0.6 T T

First-Level MRA Details Using Haar Wavelet
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Obtain the MODWT of the signal by using the db4 wavelet. The db4 wavelet has a
support of length equal to 7.

moddb4 = modwt (yn, 'db4"');

Obtain the multiresolution analysis from the db4 MODWT matrix and plot the first-level
details. The discontinuities are represented less sparsely using the db4 wavelet than the
haar wavelet.

mradb4 = modwtmra (modhaar, 'db4d"') ;

figure

hs = stem(mradb4(1,:));
grid on

hs.Marker = 'none';
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hs.ShowBaseLine = 'off';
title('First-Level MRA Details Using db4 Wavelet')

First-Level MRA Details Using db4 Wavelet
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See Also

modwt | modwtmra | waveinfo
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Comparing MODWT and MODWTMRA

Comparing MODWT and MODWTMRA

This example demonstrates the differences between the functions MODWT and
MODWTMRA. The MODWT partitions a signal's energy across detail coefficients and
scaling coefficients. The MODWTMRA projects a signal onto wavelet subspaces and a
scaling subspace.

Choose the 'sym6' wavelet. Load and plot an ECG waveform. The ECG data is taken from
the MIT-BIH Arrythmia Database.

load mit200

wv = 'sym6';

plot (ecgsig)

grid on

title(['signal of length = ',num2str (length (ecgsig))])
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signal of length = 10000
25 T T T T T T T
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Take the MODWT of the signal.

wtecg = modwt (ecgsig,wv) ;

The input data are samples of a function J1x) evaluated at ¥ -many time points. The
function can be expressed as a linear combination of the scaling function PX) and
wavelet ¥ ¥/ at varying scales and translations:

. N-l  _—ly2 I
fe — N I 0 el DU S ot B
fix)= o Cr2 P2 "x—k) 4+ JI.:IJI"J..x_u where

(x) =S5V Vg iy (2-ix — k) ,
Ji{x) =2 g djp 27 w27 —K) and Jo is the number of levels of wavelet
decomposition. The first sum is the coarse scale approximation of the signal, and the
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i x) . . . . Ie
filx) are the details at successive scales. MODWT returns the v -many coefficients LCet

] . . . Id. . .
and the (Jox N -many detail coefficients 'dl-*} of the expansion. Each row in wtecg
contains the coefficients at a different scale.

When taking the MODWT of a signal of length N , there are floor{log, (N)) -many levels
of decomposition (by default). Detail coefficients are produced at each level. Scaling

coefficients are returned only for the final level. In this example, since N = ]{KHM,

Jy = floor(log 20 10000)) = 13 Sh+l=13+1=14

and the number of rows in wtecg is

The MODWT partitions the energy across the various scales and scaling coefficients:

2 _ 5o 2
X[2=30 (1wl 2+ 1V,

W

where X is the input data, = J are the detail coefficients

: Vv
at scale J, and 0 are the final-level scaling coefficients.

Compute the energy at each scale, and evaluate their sum.

energy by scales = sum(wtecg."2,2);

Levels = {'D1';'D2';'D3';'D4';'D5';'D6';'D7';'D8';'D9';'D10'; 'D11';'D12";'D13"';'A13"};
energy table = table(Levels,energy by scales);

disp (energy table)

Levels energy by scales
'D1? 0.31592
'D2" 2.6504
'D3! 28.802
‘D4 159.37
'D5! 300.5
'D6’ 431.33
'D7! 444.93
'D8! 182.37
'DI! 45.381
'D10" 11.578
'D11" 19.809
'D12" 4.5406
'D13" 3.308
'A13! 192.46

energy total = varfun(@sum,energy table(:,2))
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1827.3

Confirm the MODWT is energy-preserving by computing the energy of the signal and
comparing it with the sum of the energies over all scales.

energy ecg = sum(ecgsig.”2);
max (abs (energy total.sum energy by scales-energy ecqg))

ans = 4.0870e-09

Take the MODWTMRA of the signal.

mraecg = modwtmra (wtecg,wv) ;

MODWTMRA returns the projections of the function J1x) onto the various wavelet
subspaces and final scaling space. That is, MODWTMRA returns

V=1 g2 oy s . )
20 €x2 $2 "x—k and the J“-many Jilx f evaluated at N -many time points.
Each row in mraecg is a projection of T1x) onto a different subspace. This means the
original signal can be recovered by adding all the projections. This is not true in the case
of the MODWT. Adding the coefficients in wtecg will not recover the original signal.

Choose a time point, add the projections of f1X) evaluated at that time point and
compare with the original signal.

time point = 1000;
abs (sum (mraecg (:, time point))-ecgsig(time point))

ans = 3.0970e-13

Confirm that, unlike MODWT, MODWTMRA is not an energy-preserving transform.

energy ecg = sum(ecgsig.”2);
energy mra scales = sum(mraecg.”2,2);
energy mra = sum(energy mra scales);
max (abs (energy mra-energy ecq))

ans = 534.7949



Comparing MODWT and MODWTMRA

The MODWTMRA is a zero-phase filtering of the signal. Features will be time-aligned.
Demonstrate this by plotting the original signal and one of its projections. To better
illustrate the alignment, zoom in.

figure

plot (ecgsig)

hold on

plot (mraecg(4,:),'-")

grid on

x1im ([4000 50007)
legend('signal', "'projection')
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Make a similar plot using the MODWT coefficients at the same scale. Note that features
will not be time-aligned.The MODWT is not a zero-phase filtering of the input.
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figure

plot (ecgsig)

hold on

plot (wtecg(4,:),'-")

grid on

x1im ([4000 50001])
legend('signal', 'coefficients')
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See Also

modwt | modwtmra
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Image Reconstruction with Biorthogonal Wavelets

This example shows how applying the order biorthogonal wavelet filters can affect image
reconstruction.

Generate the analysis and synthesis filters for the bior3.5 wavelet. Load in and display
an image.

[LoD,HiD, LoR,HiR] = wfilters('bior3.5");

load woman

imagesc (X)
colormap gray
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200
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Image Reconstruction with Biorthogonal Wavelets

The analysis filters, LoD and HiD, have 5 vanishing moments. The synthesis filters, LoR
and HiR, have 3 vanishing moments. Do a five-level wavelet decomposition of the image
using the analysis filters.

[cl,sl] = wavedec?2(X,5,LoD,HiD);

Find the threshold that keeps only those wavelet coefficients with magnitudes in the top
10 percent. Use the threshold to set the bottom 90 percent of coefficients to O.

frac = 0.1;

clsort = sort(abs(cl), 'desc');
num = numel (cl);

thr = clsort (floor (num*frac));

clnew = cl.* (abs(cl)>=thr);

Reconstruct the image using the synthesis filters and the thresholded coefficients.
Display the reconstruction.

X1 = waverec?2 (clnew,sl,LoR,HiR) ;
figure

imagesc (X1)

colormap gray
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Do a five-level wavelet decomposition of the image using the synthesis filters.

[c2,s82] = wavedec?2 (X,5,LoR,HiR);

Find the threshold that keeps only those wavelet coefficients with magnitudes in the top
10 percent. Use the threshold to set the bottom 90 percent of coefficients to 0

frac = 0.1;

c2sort = sort(abs(c2), 'desc');
num = numel (c2sort);

thr = c2sort (floor (num*frac));

c2new = c2.* (abs(c2)>=thr);
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Reconstruct the image using the synthesis filters and the thresholded coefficients.
Display the reconstruction. Decomposing with a filter that has 3 vanishing moments and
reconstructing with a filter that has 5 vanishing moments results in poor reconstruction.

X2 = waverec2 (c2new,s2,LoD,HiD) ;
figure

imagesc (X2)
colormap gray

200

250 B

See Also

biorfilt | biorwavf | wavedec?2 | waverec?2 | wfilters
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Wavelets and Vanishing Moments

This example shows how the number of vanishing moments can affect wavelet
coefficients.

Create a signal defined over the interval 0=x<2 The signal is constant over the

interval 0 =X <1 g quadratic over the interval I=x=2 plot the signal.

n = 1024;

x = linspace(0,2,n);
sig = zeros(l,n);

ind0 = (0<=x) & (x<1);
indl = (1<=x) & (x<=2);
sig(ind0) = 1;
sig(indl) = x(indl) ."2;
plot(sig)

grid on

title('Signal'")
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Wavelets and Vanishing Moments
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Compute a single-level wavelet decomposition of the signal using the db1 wavelet. This
wavelet has one vanishing moment. Plot the approximation coefficients and wavelet
coefficients.

[al,dl] = dwt(sig, 'dbl'");

figure

subplot(2,1,1)

plot(al)

grid on

title ('Approximation Coefficients - dbl"')
subplot (2,1, 2)

plot (dl)

grid on

title('Wavelet Coefficients - dbl')
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Approximation Coefficients - db1
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The wavelet coefficients corresponding with the constant portion of the signal are
approximately 0. The magnitude of the wavelet coefficients corresponding with the
quadratic portion of the signal are increasing. Because the db1 wavelet has one
vanishing moment, the wavelet is not orthogonal to the quadratic portion of the signal.

Compute a single-level wavelet decomposition of the signal using the db3 wavelet. This
wavelet has three vanishing moments. Plot the approximation coefficients and wavelet
coefficients.

[a2,d2] = dwt(sig, 'db3");
figure

subplot(2,1,1)

plot (a2)

grid on
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title ('Approximation Coefficients - db3"'")
subplot (2,1, 2)

plot (d2)

grid on

title('Wavelet Coefficients - db3')

Approximation Coefficients - db3

D i i
0 100 200 300 400 500 G600

<1073 Wavelet Coefficients - db3
2 T T T T T

0 100 200 300 400 500 GO0

The wavelet coefficients corresponding with the constant portion of the signal are
approximately 0. The spike in the middle corresponds to where the constant and
quadratic pieces of the signal meet. The spike at the end is a boundary effect. The
magnitude of the wavelet coefficients corresponding with the quadratic portion of the
signal are approximately 0. Because the db3 wavelet has three vanishing moments, the
wavelet is orthogonal to the quadratic part of the signal.

1-43



1 Getting Started with Wavelet Toolbox Software

See Also

waveinfo
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Continuous and Discrete Wavelet Transforms

This topic describes the major differences between the continuous wavelet transform
(CWT) and the discrete wavelet transform (DWT) — both decimated and nondecimated
versions. cwt is a discretized version of the CWT so that it can be implemented in a
computational environment. This discussion focuses on the 1-D case, but is applicable to
higher dimensions.

The cwt wavelet transform compares a signal with shifted and scaled (stretched or

shrunk) copies of a basic wavelet. If V() is a wavelet centered at t=0 with time support

L (t-u
on [-T/2, T/2], then Vs * 7 is centered at t = u with time support [-sT/2+u, sT/2+u]. If
0<s<1, the wavelet is contracted (shrunk) and if s>1, the wavelet is stretched. The
mathematical term for this is dilation. See “Continuous Wavelet Transform and Scale-
Based Analysis” on page 1-74 for examples of how this operation extracts features in the
signal by matching it against dilated and translated wavelets.

The major difference between the CWT and discrete wavelet transforms, such as the dwt
and modwt, is how the scale parameter is discretized. The CWT discretizes scale more
finely than the discrete wavelet transform. In the CWT, you typically fix some base

which is a fractional power of two, for example, 2V where v is an integer greater than 1.
The v parameter is often referred to as the number of “voices per octave”. Different scales
are obtained by raising this base scale to positive integer powers, for example

i/ : . . .. . .
2/ j=123,... . The translation parameter in the CWT is discretized to integer values,
denoted here by m. The resulting discretized wavelets for the CWT are

1
— ().

V2"

The reason v is referred to as the number of voices per octave is because increasing the

scale by an octave (a doubling) requires v intermediate scales. Take for example 2"/ =2
and then increase the numerator in the exponent until you reach 4, the next octave. You

move from 2" =2 to 22"/V =4 There are v intermediate steps. Common values for v are
10,12,14,16, and 32. The larger the value of v, the finer the discretization of the scale
parameter, s. However, this also increases the amount of computation required because
the CWT must be computed for every scale. The difference between scales on a log, scale
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is 1/v. See “Time-Frequency Analysis with the Continuous Wavelet Transform” and
“Time-Frequency Analysis of Modulated Signals” for examples of scale vectors with the
CWT.

In the discrete wavelet transform, the scale parameter is always discretized to integer
powers of 2, 2, j=1,2,3,..., so that the number of voices per octave is always 1. The
difference between scales on a log, scale is always 1 for discrete wavelet transforms. Note
that this is a much coarser sampling of the scale parameter, s, than is the case with the
CWT. Further, in the decimated (downsampled) discrete wavelet transform (DWT), the
translation parameter is always proportional to the scale. This means that at scale, 2J,
you always translate by 2/im where m is a nonnegative integer. In nondecimated discrete
wavelet transforms like modwt and swt, the scale parameter is restricted to powers of
two, but the translation parameter is an integer like in the CWT. The discretized wavelet
for the DWT takes the following form

L
J2i
The discretized wavelet for the nondecimated discrete wavelet transform, such as the
MODWT, is

L

\/;ll/(j).

To summarize:

Y (2 (=27 m)).

* The CWT and the discrete wavelet transforms differ in how they discretize the scale
parameter. The CWT typically uses exponential scales with a base smaller than 2, for
example 212 | The discrete wavelet transform always uses exponential scales with
the base equal to 2. The scales in the discrete wavelet transform are powers of 2. Keep
in mind that the physical intrepretation of scales for both the CWT and discrete
wavelet transforms requires the inclusion of the signal’s sampling interval if it is not
equal to one. For example, assume you are using the CWT and you set your base to

_5l/12 . C :
S0 =2"" . To attach physical significance to that scale, you must multiply by the

sampling interval Af, so a scale vector covering approximately four octaves with the

. . .ol i=1.2.... .
sampling interval taken into account is oAt j=12,-48 Note that the sampling
interval multiplies the scales, it is not in the exponent. For discrete wavelet
transforms the base scale is always 2.
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The decimated and nondecimated discrete wavelet transforms differ in how they
discretize the translation parameter. The decimated discrete wavelet transform
(DWT), always translates by an integer multiple of the scale, 2im . The nondecimated
discrete wavelet transform translates by integer shifts.

These differences in how scale and translation are discretized result in advantages and
disadvantages for the two classes of wavelet transforms. These differences also
determine use cases where one wavelet transform is likely to provide superior results.
Some important consequences of the discretization of the scale and translation
parameter are:

The DWT provides a sparse representation for many natural signals. In other words,
the important features of many natural signals are captured by a subset of DWT
coefficients that is typically much smaller than the original signal. This “compresses”
the signal. With the DWT, you always end up with the same number of coefficients as
the original signal, but many of the coefficients may be close to zero in value. As a
result, you can often throw away those coefficients and still maintain a high-quality
signal approximation. With the CWT, you go from N samples for an N-length signal to
a M-by-N matrix of coefficents with M equal to the number of scales. The CWT is a
highly redundant transform. There is significant overlap between wavelets at each
scale and between scales. The computational resources required to compute the CWT
and store the coefficients is much larger than the DWT. The nondecimated discrete
wavelet transform is also redundant but the redundancy factor is usually significantly
less than the CWT, because the scale parameter is not discretized so finely. For the
nondecimated discrete wavelet transform, you go from N samples to an L+1-by-N
matrix of coefficients where L is the level of the transform.

The strict discretization of scale and translation in the DWT ensures that the DWT is
an orthonormal transform (when using an orthogonal wavelet). There are many
benefits of orthonormal transforms in signal analysis. Many signal models consist of
some deterministic signal plus white Gaussian noise. An orthonormal transform takes
this kind of signal and outputs the transform applied to the signal plus white noise.
In other words, an orthonormal transform takes in white Gaussian noise and outputs
white Gaussian noise. The noise is uncorrelated at the input and output. This is
important in many statistical signal processing settings. In the case of the DWT, the
signal of interest is typically captured by a few large-magnitude DWT coefficients,
while the noise results in many small DWT coefficients that you can throw away. If
you have studied linear algebra, you have no doubt learned many advantages to using
orthonormal bases in the analysis and representation of vectors. The wavelets in the
DWT are like orthonormal vectors. Neither the CWT nor the nondecimated discrete
wavelet transform are orthonormal transforms. The wavelets in the CWT and
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nondecimated discrete wavelet transform are technically called frames, they are
linearly-dependent sets.

* The DWT is not shift-invariant. Because the DWT downsamples, a shift in the input
signal does not manifest itself as a simple equivalent shift in the DWT coefficients at
all levels. A simple shift in a signal can cause a significant realignment of signal
energy in the DWT coefficients by scale. The CWT and nondecimated discrete wavelet
transform are shift-invariant. There are some modifications of the DWT such as the
dual-tree complex discrete wavelet transform that mitigate the lack of shift
invariance in the DWT, see “Critically Sampled and Oversampled Wavelet Filter
Banks” for some conceptual material on this topic and “Dual-Tree Wavelet
Transforms” for an example.

+ The discrete wavelet transforms are equivalent to discrete filter banks. Specifically,
they are tree-structured discrete filter banks where the signal is first filtered by a
lowpass and a highpass filter to yield lowpass and highpass subbands. Subsequently,
the lowpass subband is iteratively filtered by the same scheme to yield narrower
octave-band lowpass and highpass subbands. In the DWT, the filter outputs are
downsampled at each successive stage. In the nondecimated discrete wavelet
transform, the outputs are not downsampled. The filters that define the discrete
wavelet transforms typically only have a small number of coefficients so the
transform can be implemented very efficiently. For both the DWT and nondecimated
discrete wavelet transform, you do not actually require an expression for the wavelet.
The filters are sufficient. This is not the case with the CWT. The most common
implementation of the CWT requires you have the wavelet explicitly defined. Even
though the nondecimated discrete wavelet transform does not downsample the signal,
the filter bank implementation still allows for good computational performance, but
not as good as the DWT.

* The discrete wavelet transforms provide perfect reconstruction of the signal upon
inversion. This means that you can take the discrete wavelet transform of a signal
and then use the coefficients to synthesize an exact reproduction of the signal to
within numerical precision. You can implement an inverse CWT, but it is often the
case that the reconstruction is not perfect. Reconstructing a signal from the CWT
coefficients is a much less stable numerical operation.

* The finer sampling of scales in the CWT typically results in a higher-fidelity signal
analysis. You can localize transients in your signal, or characterize oscillatory
behavior better with the CWT than with the discrete wavelet transforms.

For additional information on wavelet transforms and applications, see

* “From Fourier Analysis to Wavelet Analysis” on page 1-67
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* “Continuous Wavelet Transform and Scale-Based Analysis” on page 1-74
+ “Continuous Wavelet Transform as a Bandpass Filter” on page 1-81

* “Inverse Continuous Wavelet Transform” on page 1-85

+  “Interpreting Continuous Wavelet Coefficients” on page 1-87

+  “Critically-Sampled Discrete Wavelet Transform” on page 1-103

+ “Wavelet Packets: Decomposing the Details”

Guidelines for Continuous Wavelet Transform vs. Discrete Wavelet
Transform

Based on the previous section, here are some basic guidelines for deciding on whether to
use a discrete or continuous wavelet transform.

+ If your application is to obtain the sparsest possible signal representation for
compression, denoising, or signal transmission, use the DWT with wavedec.

+ If your application requires an orthonormal transform, use the DWT with one of the
orthogonal wavelet filters. The orthogonal families in the Wavelet Toolbox are
designated as type 1 wavelets in the wavelet manager, wavemngr. Valid built-in
orthogonal wavelet families are 'haar', 'dbN', 'fkN', 'coifN', or 'symN' where
N is the number of vanishing moments for all families except 'fk'. For 'fk', Nis
the number of filter coefficients. See waveinfo for more detail.

+ If your application requires a shift-invariant transform but you still need perfect
reconstruction and some measure of computational efficiency, try a nondecimated
discrete wavelet transform like modwt or a dual-tree transform like dddtree.

+ If your primary goal is a detailed time-frequency (scale) analysis or precise
localization of signal transients, use cwt. For an example of time-frequency analysis
with the CWT, see “Time-Frequency Analysis with the Continuous Wavelet
Transform”.

* For denoising a signal by thresholding wavelet coefficients, use the DWT with wden
or wdencmp. For an example of denoising with the DWT, see “Wavelet Denoising”.

+ If your application requires that you have a solid understanding of the statistical
properties of the wavelet coefficients, use a discrete wavelet transform. There is active
work in understanding the statistical properties of the CWT, but currently there are
many more distributional results for the discrete wavelet transforms. The success of
the DWT in denoising is largely due to our understanding of its statistical properties.
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For an example of estimation and hypothesis testing using a nondecimated discrete
wavelet transform see “Wavelet Analysis of Financial Data”.

See Also

More About

. Understanding Wavelets, Part 1: What Are Wavelets
. Understanding Wavelets, Part 2: Types of Wavelet Transforms

. Understanding Wavelets, Part 3: An Example Application of the Discrete Wavelet
Transform

. Understanding Wavelets, Part 4: An Example Application of the Continuous
Wavelet Transform
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Haar Transforms for Time Series Data and Images

Haar Transforms for Time Series Data and Images

This example shows how to use Haar transforms to analyze time series data and images.
To run all the code in this example, you must have the Signal Processing Toolbox™ and
Image Processing Toolbox™.

First, visualize the Haar wavelet.

[~,psi,x] = wavefun('haar',10);
X = x(2:end-1);

psi = psi(2:end-1);

hl = plot(x(1:512),psi(1:512)); grid on; hold on;
line(x(513:end),psi(513:end));

xlabel ('t'); ylabel ('"\psi(t)','fontsize',14);
title ('Haar Wavelet');
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The Haar wavelet is discontinuous. As a result, it is typically not used in denoising or
compression applications where smoothness of the reconstruction wavelet is an
important consideration. However, Haar transforms are useful in a number of
applications due to their superior time (spatial) localization and computational efficiency.
The Wavelet Toolbox™ supports Haar analysis in most of the discrete wavelet analysis
tools. This example features Haar lifting implementations which support integer-to-
integer wavelet transforms for both 1-D and 2-D data and multichannel (multivariate) 1-
D data.

Analyze Signal Variability By Scale

Load and plot the clock 571 dataset. This example is essentially a recreation of the
analysis presented in Percival & Walden (2000), pp 13-16.
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load clock 571;

figure;

plot (clock 571)

xlabel ('Days'")

grid on;

title('Daily Average Fractional Frequency Deviates -- Cesium Clock');

Daily Average Fractional Frequency Deviates -- Cesium Clock
—1 3 T T T T T

_21 i i i i i
0 200 400 GO0 800 1000 1200

Days

The data are daily average fractional frequency deviates for a particular cesium beam
atomic clock with respect to the U.S. Naval Observatory master clock. If the value of the
time series is 0, that means the cesium clock has neither lost nor gained time with
respect to the master clock over the duration of the day. If the value is negative, the clock
has lost time that day, a positive value means that the clock has gained time. For this
data, the values are all negative. For certain applications, like geodesy, it is important to
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know whether there are certain time scales where the clock's deviation from the master
clock is at its lowest value. In other words, are there certain scales where the clock
agrees most closely with the master clock? The Haar transform is useful here because it
possesses two important properties: It decorrelates data by scale and it partitions signal
energy among scale.

To illustrate the decorrelating property, obtain the Haar transform down to level 6. Plot
the autocorrelation sequence of the original data along with the autocorrelation of the
wavelet coefficients by scale for scales of 2,4,8,16, and 32 days. Dashed lines on the plots
delineate 95% confidence intervals for white noise inputs. Values exceeding those lines
are indicative of significant autocorrelation in the data.

[s,w] = haart(clock 571,6);
helperAutoCorr (clock 571,w);
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Autocorrelation Sequences for Original Data and Wavelet Coefficients
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The top plot shows the autocorrelation sequence for the original data. Subsequent plots
show the autocorrelation sequences for wavelet coefficients at increasingly coarser scales.
It is clear that the autocorrelation sequence of the original data exhibits correlation at all
lags while the Haar transform coefficients are decorrelated. Next, demonstrate energy
conservation.

sigenergy = norm(clock 571,2)"2
energyByScale = cellfun (@ (x)norm(x,2)"2,w);
haarenergy = norm(s,2)"2+sum(energyByScale)

haarenergy =

2.7964e+05

The total signal energy is preserved by the Haar transform. Because of these properties,
you can make meaningful inferences based on the proportion of signal energy captured
by the wavelet coefficients at each scale.

scales = 2.7(1:0);

figure;
plot(scales,energyByScale, '-0")

xlabel ('Scale (days)'");

set (gca, "xscale', "log")

set (gca, 'xtick',2.7(1:6));

ylabel ('Proportion of Signal Energy');
grid on;

1-56



Haar Transforms for Time Series Data and Images

Froportion of Signal Energy
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You see that the energy is at a minimum for scales of 16 and 32 days. For the Haar
wavelet (and all Daubechies wavelets), the wavelet coefficients at a given scale represent
differences between weighted averages of the data over a duration 1/2 the length of the
scale. This plot indicates scales over which the cesium clock is in best agreement with the
master clock. This means that considering data over approximately two week or even one
month periods is more accurate than data on smaller or longer scales. As previously
mentioned, this has important implications for geodesy where extremely precise time
measurements are critical.

Although the Haar wavelet is discontinuous, it is still effective at representing various
kinds of time series. Examples include count data and data where values of a time series
are tied to some specific state, which affects the level of the time series. As an example,
consider the relationship between heart rate and sleep state.
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Create Signal Approximations

The data consist of two time series. One time series is the heart rate of a 66-day old
infant sampled every 16 seconds for just over 9 hours. The heart rate time series is
integer-valued. The other time series is the expertly scored sleep state of the same infant
over the same period with the same sampling rate. The sleep state data was scored based
on the infant's EEG and EOG (eye movement) data, not based on the heart rate. The
sleep state codes are 1=quiet sleep, 2=between quiet and active sleep, 3=active sleep, and
4=awake. Both time series were recorded by Prof. Peter Fleming, Dr Andrew Sawczenko,
and Jeanine Young of the Institute of Child Health, Royal Hospital for Sick Children,
Bristol and kindly provided for use in this example. Plot the heart rate data along with
the sleep states.

load BabyECGData;
figure;

yyaxis left;

plot (times, HR) ;

ylabel ("HR'") ;
xlabel ("Hrs'");
YLim = [min (HR)-1 max (HR)+1];

yyaxis right;

plot (times, SS);

ylabel ('Sleep State');

YLim = [0.5 4.5];

title('Baby ECG and Sleep State');
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An inspection of the data reveals an apparent correlation between sleep state and heart
rate, but the data is extremely noisy. Because the Haar transform provides a staircase
approximation to a signal, it is often useful in situations where a response is dependent
on a predictor variable with a small number of discrete states. Here the discrete states
are the four sleep stages. Obtain the Haar approximation of the heart rate data using a
level 5 approximation. Because the heart rate data is integer-valued, use the 'integer’
flag to ensure that integer-valued data is returned. Plot the result.

[S,W] = haart (HR, "integer');
HaarHR = ihaart(S,W,5, "integer');
figure;

hL = plotyy(times,HaarHR, times, SS);
Ax1l = hL(1l);
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Ax2 = hL(2);
Ax1.YLim = [min (HaarHR)-1 max (HaarHR)+1]; Axl.YLabel.String = 'HR';
Ax2.YLim = [0.5 4.5]; Ax2.YLabel.String = 'Sleep State';

xlabel ('Hrs');
title ('Haar Approximation and Sleep State');

Haar Approximation and Sleep State
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The Haar approximation more clearly shows the relationship between the sleep state and
the heart rate data. You can assess this change by looking at the correlation between the
raw data and the sleep state time series.

corr (SS, HR)

ans =
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Now compare the value of 0.56 with the correlation between the sleep state data and the
Haar approximation

corr (SS, HaarHR)

ans =

(@)
o)
O
(@)

The correlation has increased from 0.56 to 0.69. More advanced wavelet analysis and
modeling of this data is presented in Nason, von Sachs, & Kroisandt (2000) and Nason,
Sapatinas, & Sawczenko (2001).

Digital Watermarking of Images

Watermarking is an important data protection tool. It is a passive protection technique
where a marker is covertly inserted in some data in order to verify the authenticity or
integrity of the data. Wavelet techniques in general and the Haar transform in particular
are frequently employed in watermarking images. This example illustrates the use of the
Haar transform in watermarking an image and recovering the watermark. The example
employs a simple watermarking scheme chosen for ease of illustration. In this scheme,
the watermark is inserted in the approximation coefficients at level 3.

Watermark an image of a Mandril with one of a honey badger. Read in the Mandrill
image. Resize it to 2048x2048 and display the result.

coverIM imread ('mandrill.jpg');

coverIM = rgb2gray(coverIM) ;

coverIM = imresize (im2double (coverIM), [2048 2048]);
imagesc (coverIM); colormap gray;

title('Original Image to Watermark');

axis off; axis square;
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Obtain the Haar transform of the Mandrill image down to level 3.

[LLorig,LHorig,HLorig, HHorig] = haart2 (coverIM, 3);
imagesc(LLorig), title('Level 3 Haar Approximation');
axis off; axis square;
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" .

Read in watermark image and resize it.

watermark = imread('honeybadger.jpg');
watermark = im2double (rgb2gray (watermark));
watermark = imresize (watermark, [2048 2048]);

Obtain the Haar transform of the watermark image down to level 3.

[LLw, LHw, HLw, HHw] = haart2 (watermark, 3) ;
imagesc (LLw) ; colormap gray;

title('Level 3 Haar Approximation--Watermark');
axis off; axis square;

1-63



1 Getting Started with Wavelet Toolbox Software

1-64

Level 3 Haar Approximation--Watermark

Add the honey badger watermark to the Mandril image by attenuating the level-3
approximation coefficients of the watermark and inserting the attenuated coefficients
into the level-3 Mandrill approximation coefficients.

Llwatermarked = LLorig+le-4*LLw;

markedIM = ihaart2 (LLwatermarked, LHorig,HLorig,HHorig) ;
imagesc (markedIM); title('Watermarked Image')

axis off; axis square;

colormap gray;
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The watermark (honey badger) is not visible in the watermarked image. Because you
know what algorithm was used to insert the watermark, you can recover the watermark
using the Haar transform.

[LLr, LHr,HLr,HHr] = haart2 (markedIM, 3);

Llmarked = (LLr-LLorig) .*led;

imagesc (LLmarked); title('Recovered Watermark');
colormap gray;

axis off; axis square;
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Recovered Watermark
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From Fourier Analysis to Wavelet Analysis

In this section...

“Inner Products” on page 1-67
“Fourier Transform” on page 1-69

“Short-Time Fourier Transform” on page 1-70

Inner Products

Both the Fourier and wavelet transforms measure similarity between a signal and an
analyzing function. Both transforms use a mathematical tool called an inner product as
this measure of similarity. The two transforms differ in their choice of analyzing
function. This results in the different way the two transforms represent the signal and
what kind of information can be extracted.

As a simple example of the inner product as a measure of similarity, consider the inner
product of vectors in the plane. The following MATLAB example calculates the inner

product of three unit vectors, {z,v,w}, in the plane:
J3/2)(1/42) (0
{ ) )
1/2 Jl1/42 (1

= [sqrt(3)/2 1/2]1;

[1/sqrt(2) 1/sqrt(2)];

= [0 1];

% Three unit vectors in the plane

quiver ([0 0 0],[0 0 0], [u(l) v(1) w(l)]l,[u(2) v(2) w(2)]);
axis([-1 1 0 11);

text (-0.020,0.9371, 'w'");

text (0.6382,0.6623,'v");

text (0.7995,0.4751, 'u'");

% Compute inner products and print results

fprintf ('The inner product of u and v is %1.2f\n', dot(u,v))
fprintf ('The inner product of v and w is %1.2f\n', dot(w,v))
fprintf ('The inner product of u and w is %1.2f\n', dot(u,w))

= < c
I

Looking at the figure, it is clear that u and v are most similar in their orientation, while
u and w are the most dissimilar.
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The inner products capture this geometric fact. Mathematically, the inner product of two
vectors, u and v is equal to the product of their norms and the cosine of the angle, 0,
between them:

<u,v>=|u| | v| cos@)

For the special case when both © and v have unit norm, or unit energy, the inner product
1s equal to cos(0) and therefore lies between [-1,1]. In this case, you can interpret the
inner product directly as a correlation coefficient. If either u or v does not have unit
norm, the inner product may exceed 1 in absolute value. However, the inner product still
depends on the cosine of the angle between the two vectors making it interpretable as a
kind of correlation. Note that the absolute value of the inner product is largest when the

angle between them is either 0 or 7 radians (0 or 180 degrees). This occurs when one
vector is a real-valued scalar multiple of the other.

While inner products in higher-dimensional spaces like those encountered in the Fourier
and wavelet transforms do not exhibit the same ease of geometric interpretation as the
previous example, they measure similarity in the same way. A significant part of the
utility of these transforms is that they essentially summarize the correlation between the
signal and some basic functions with certain physical properties, like frequency, scale, or
position. By summarizing the signal in these constituent parts, we are able to better
understand the mechanisms that produced the signal.
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Fourier Transform

Fourier analysis is used as a starting point to introduce the wavelet transforms, and as a
benchmark to demonstrate cases where wavelet analysis provides a more useful
characterization of signals than Fourier analysis.

Mathematically, the process of Fourier analysis is represented by the Fourier transform:
Flo)= [ f@)e7™dt

which is the integral (sum) over all time of the signal f(t) multiplied by a complex
exponential. Recall that a complex exponential can be broken down into real and
imaginary sinusoidal components. Note that the Fourier transform maps a function of a
single variable into another function of a single variable.

The integral defining the Fourier transform is an inner product. See “Inner Products” on
page 1-67 for an example of how inner products measure of similarity between two
signals. For each value of o, the integral (or sum) over all values of time produces a
scalar, F(®»), that summarizes how similar the two signals are. These complex-valued
scalars are the Fourier coefficients. Conceptually, multiplying each Fourier coefficient,
F(w), by a complex exponential (sinusoid) of frequency ® yields the constituent sinusoidal
components of the original signal. Graphically, the process looks like

. . Fourier [ e
1 ' ta v ' 'I..I'.I"I
_I — — — — — — + — e —t — — p— — ——— — | : |.|LI [
1 " ! ' 1
! "+ Transform )
Signal Constituent sinusoids of diferant fraquencies

Because /% is complex-valued, F(w) is, in general, complex-valued. If the signal
contains significant oscillations at an angular frequency of @, the absolute value of

F(ay) will be large. By examining a plot of | F(®) | as a function of angular frequency, it
is possible to determine what frequencies contribute most to the variability of f(t).

To illustrate how the Fourier transform captures similarity between a signal and
sinusoids of different frequencies, the following MATLAB code analyzes a signal
consisting of two sinusoids of 4 and 8 Hertz (Hz) corrupted by additive noise using the
discrete Fourier transform.

1-69



1 Getting Started with Wavelet Toolbox Software

1-70

rng (0, "twister');

Fs = 128;

t = linspace(0,1,128);

X = 2*%cos (2*pi*4*t)+1.5%*sin(2*pi*8*t)+randn(size(t));
xDFT = fft (x);

Freq = 0:64;

subplot (211) ;

plot(t,x); xlabel('Seconds'); ylabel ('Amplitude');
subplot (212) ;

plot (Freq, abs (xDFT (1:length (xDFT) /2+1)))

set (gca, 'xtick', [4:4:64]);

xlabel ('Hz'"); ylabel ('Magnitude');
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Viewed as a time signal, it is difficult to determine what significant oscillations are
present in the data. However, looking at the absolute value of the Fourier transform
coefficients as function of frequency, the dominant oscillations at 4 and 8 Hz are easy to
detect.

Short-Time Fourier Transform

The Fourier transform summarizes the similarity between a signal and a sinusoid with a
single complex number. The magnitude of the complex number captures the degree to
which oscillations at a particular frequency contribute to the signal's energy, while the
argument of the complex number captures phase information. Note that the Fourier
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coefficients have no time dependence. The Fourier coefficients are obtained by
integrating, or summing, over all time, so it is clear that this information is lost.
Consider the following two signals:
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Both signals consist of a single sine wave with a frequency of 20 Hz. However, in the top
signal, the sine wave lasts the entire 1000 milliseconds. In the bottom plot, the sine wave
starts at 250 and ends at 750 milliseconds. The Fourier transform detects that the two
signals have the same frequency content, but has no way of capturing that the duration
of the 20 Hz oscillation differs between the two signals. Further, the Fourier transform
has no mechanism for marking the beginning and end of the intermittent sine wave.

In an effort to correct this deficiency, Dennis Gabor (1946) adapted the Fourier transform
to analyze only a small section of the signal at a time -- a technique called windowing the
signal. Gabor's adaptation is called the short-time Fourier transform (STFT). The
technique works by choosing a time function, or window, that is essentially nonzero only
on a finite interval. As one example consider the following Gaussian window function:

w(t) = \/O—Te_atz
/4

The Gaussian function is centered around t=0 on an interval that depends on the value of
a. Shifting the Gaussian function by t results in:

W(t _ T) — \/Ee—a(t—r)z ’
T
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which centers the Gaussian window around t. Multiplying a signal by w(t — 1) selects a
portion of the signal centered at t. Taking the Fourier transform of these windowed
segments for different values of t, produces the STFT. Mathematically, this is:

Flw,1) = j FOw(t—1)e 7 dt

The STFT maps a function of one variable into a function of two variables, @ and t. This
2-D representation of a 1-D signal means that there is redundancy in the STFT. The
following figure demonstrates how the STFT maps a signal into a time-frequency
representation.

window
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Fourier

Frequency

Transform

Time )
Time

The STFT represents a sort of compromise between time- and frequency-based views of a
signal. It provides some information about both when and at what frequencies a signal
event occurs. However, you can only obtain this information with limited precision, and
that precision is determined by the size of the window.

While the STFT compromise between time and frequency information can be useful, the
drawback is that once you choose a particular size for the time window, that window is
the same for all frequencies. Many signals require a more flexible approach -- one where
you can vary the window size to determine more accurately either time or frequency.

Instead of plotting the STFT in three dimensions, the convention is to code | F(®,7) | as
intensity on some color map. Computing and displaying the STFT of the two 20-Hz sine
waves of different duration shown previously:
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By using the STFT, you can see that the intermittent sine wave begins near 250 msec
and ends around 750 msec. Additionally, you can see that the signal's energy is
concentrated around 20 Hz.
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1-74

In this section...

“Definition of the Continuous Wavelet Transform” on page 1-74
“Scale” on page 1-75

“Shifting” on page 1-79

“CWT as a Windowed Transform” on page 1-79

Definition of the Continuous Wavelet Transform

Like the Fourier transform, the continuous wavelet transform (CWT) uses inner products
to measure the similarity between a signal and an analyzing function. In the Fourier

transform, the analyzing functions are complex exponentials, e/™® . The resulting
transform is a function of a single variable, @. In the short-time Fourier transform, the

analyzing functions are windowed complex exponentials, w(t)ej @ and the result is a

function of two variables. The STFT coefficients, F(w,7), represent the match between
the signal and a sinusoid with angular frequency ®» in an interval of a specified length
centered at T.

In the CWT, the analyzing function is a wavelet, . The CWT compares the signal to
shifted and compressed or stretched versions of a wavelet. Stretching or compressing a
function is collectively referred to as dilation or scaling and corresponds to the physical
notion of scale. By comparing the signal to the wavelet at various scales and positions,
you obtain a function of two variables. The 2-D representation of a 1-D signal is
redundant. If the wavelet is complex-valued, the CWT is a complex-valued function of
scale and position. If the signal is real-valued, the CWT is a real-valued function of scale
and position. For a scale parameter, a>0, and position, b, the CWT 1is:

Cla,bsf Oy @)=~ oty (ﬂ jdt
SOy —

where * denotes the complex conjugate. Not only do the values of scale and position
affect the CWT coefficients, the choice of wavelet also affects the values of the
coefficients.

By continuously varying the values of the scale parameter, a, and the position
parameter, b, you obtain the cwt coefficients C(a,b). Note that for convenience, the
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dependence of the CWT coefficients on the function and analyzing wavelet has been
suppressed.

Multiplying each coefficient by the appropriately scaled and shifted wavelet yields the
constituent wavelets of the original signal.

: ¥ Wavelet

[ ., Transform
Signal Constituent waveiets of different scales and positions

There are many different admissible wavelets that can be used in the CWT. While it may
seem confusing that there are so many choices for the analyzing wavelet, it is actually a
strength of wavelet analysis. Depending on what signal features you are trying to detect,
you are free to select a wavelet that facilitates your detection of that feature. For
example, if you are trying to detect abrupt discontinuities in your signal, you may choose
one wavelet. On the other hand, if you are interested in finding oscillations with smooth
onsets and offsets, you are free to choose a wavelet that more closely matches that
behavior.

Scale

Like the concept of frequency, scale is another useful property of signals and images. For
example, you can analyze temperature data for changes on different scales. You can look
at year-to-year or decade-to-decade changes. Of course, you can examine finer (day-to-
day), or coarser scale changes as well. Some processes reveal interesting changes on long
time, or spatial scales that are not evident on small time or spatial scales. The opposite
situation also happens. Some of our perceptual abilities exhibit scale invariance. You
recognize people you know regardless of whether you look at a large portrait, or small
photograph.

To go beyond colloquial descriptions such as “stretching” or “shrinking” we introduce the
scale factor, often denoted by the letter a. The scale factor is an inherently positive
quantity, a>0. For sinusoids, the effect of the scale factor is very easy to see.
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In sin(at), the scale is the inverse of the radian frequency, a.

The scale factor works exactly the same with wavelets. The smaller the scale factor, the
more “compressed” the wavelet. Conversely, the larger the scale, the more stretched the
wavelet. The following figure illustrates this for wavelets at scales 1,2, and 4.
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This general inverse relationship between scale and frequency holds for signals in
general.

Not only is a time-scale representation a different way to view data, it is a very natural
way to view data derived from a great number of natural phenomena.

Scale and Frequency

There is clearly a relationship between scale and frequency. Recall that longer scales
correspond to the most “stretched” wavelets. The more stretched the wavelet, the longer
the portion of the signal with which it is being compared, and therefore the coarser the
signal features measured by the wavelet coefficients.
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- wavelet  ——\fyr-—

small scale Long scale

To summarize, the general correspondence between scale and frequency is:

+  Small scale ¢ > Compressed wavelet = Rapidly changing details = High frequency .

* Long scale a > Stretched wavelet = Slowly changing, coarse features = Low frequency
®.

While there is a general relationship between scale and frequency, no precise
relationship exists. Users familiar with Fourier analysis often want to define a mapping
between a wavelet at a given scale with a specified sampling period to a frequency in
hertz. You can only do this in a general sense. Therefore, it is better to talk about the
pseudo-frequency corresponding to a scale. The Wavelet Toolbox software provides two
functions centfrq and scal2frq, which enable you to find these approximate scale-
frequency relationships for specified wavelets and scales.

The basic approach identifies the peak power in the Fourier transform of the wavelet as
its center frequency and divides that value by the product of the scale and the sampling
interval. See scal2frq for details. The following example shows the match between the
estimated center frequency of the db8 wavelet and a sinusoid of the same frequency.
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The relationship between scale and frequency in the CWT is also explored in “Continuous
Wavelet Transform as a Bandpass Filter” on page 1-81.

Shifting

Shifting a wavelet simply means delaying (or advancing) its onset. Mathematically,
delaying a function f(¢) by & is represented by (¢ — k):

Wavelet function Shifted wavelet function
W) ywit—k)

CWT as a Windowed Transform

In “Short-Time Fourier Transform” on page 1-70, the STFT is described as a windowing
of the signal to create a local frequency analysis. A shortcoming of the STFT approach is
that the window size is constant. There is a trade off in the choice of window size. A
longer time window improves frequency resolution while resulting in poorer time
resolution because the Fourier transform loses all time resolution over the duration of
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the window. Conversely, a shorter time window improves time localization while
resulting in poorer frequency resolution.

Wavelet analysis represents the next logical step: a windowing technique with variable-
sized regions. Wavelet analysis allows the use of long time intervals where you want
more precise low-frequency information, and shorter regions where you want high-
frequency information.
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The following figure contrasts the different ways the STFT and wavelet analysis
decompose the time-frequency plane.
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Continuous Wavelet Transform as a Bandpass Filter

In this section...

“CWT as a Filtering Technique” on page 1-81
“DFT-Based Continuous Wavelet Transform” on page 1-83

CWT as a Filtering Technique

The continuous wavelet transform (CWT) computes the inner product of a signal, f(¢),

with translated and dilated versions of an analyzing wavelet, v (¢). The definition of the
CWT is:

o 1 =«(t-b
Cla,bsfOy @) = fO—y" | =2 |dt

—ea a a
You can also interpret the CWT as a frequency-based filtering of the signal by rewriting
the CWT as an inverse Fourier transform.

Cla,b;f@),y (@) = LJM f(w)l/;(aa))eia’bdw
27 o0

where f'(a)) and ¥ (w) are the Fourier transforms of the signal and the wavelet.

From the preceding equations, you can see that stretching a wavelet in time causes its
support in the frequency domain to shrink. In addition to shrinking the frequency
support, the center frequency of the wavelet shifts toward lower frequencies. The
following figure demonstrates this effect for a hypothetical wavelet and scale (dilation)
factors of 1,2, and 4.
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This depicts the CWT as a bandpass filtering of the input signal. CWT coefficients at
lower scales represent energy in the input signal at higher frequencies, while CWT
coefficients at higher scales represent energy in the input signal at lower frequencies.
However, unlike Fourier bandpass filtering, the width of the bandpass filter in the CWT
is inversely proportional to scale. The width of the CWT filters decreases with increasing
scale. This follows from the uncertainty relationships between the time and frequency
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support of a signal: the broader the support of a signal in time, the narrower its support
in frequency. The converse relationship also holds.

In the wavelet transform, the scale, or dilation operation is defined to preserve energy.
To preserve energy while shrinking the frequency support requires that the peak energy
level increases. The implementation of cwt in Wavelet Toolbox uses L1 normalization.
The quality factor, or @ factor of a filter is the ratio of its peak energy to bandwidth.
Because shrinking or stretching the frequency support of a wavelet results in
commensurate increases or decreases in its peak energy, wavelets are often referred to as
constant-Q filters.

DFT-Based Continuous Wavelet Transform

The equation in the preceding section defined the CWT as the inverse Fourier transform
of a product of Fourier transforms.

Cla,b;f @),y @) = LJM ?(w)'ll*(aw)ejwbdw
27—

The time variable in the inverse Fourier transform is the translation parameter, b.

This suggests that you can compute the CWT with the inverse Fourier transform.
Because there are efficient algorithms for the computation of the discrete Fourier
transform and its inverse, you can often achieve considerable savings by using £ft and
ifft when possible.

To obtain a picture of the CWT in the Fourier domain, start with the definition of the
wavelet transform:

< OV p®) >= % [” o b

If you define:
_ 1 =«
V,t)=—y (-t/a)
a
you can rewrite the wavelet transform as

(F*PXB) = | fen -t

which explicitly expresses the CWT as a convolution.
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To implement the discretized verion of the CWT, assume that the input sequence is a
length N vector, x/n]. The discrete version of the preceding convolution is:

N-1
W,[b]= Y dnly,[b-n]

n=0

To obtain the CWT, it appears you have to compute the convolution for each value of the
shift parameter, b, and repeat this process for each scale, a.

However, if the two sequences are circularly-extended (periodized to length N), you can
express the circular convolution as a product of discrete Fourier transforms. The CWT is
the inverse Fourier transform of the product

1 (22N s » j21kb/N
W, ()= — == X(@rk/ NA)y*(a2rk / NAt)e! "

NV At /5

where At is the sampling interval (period).

Expressing the CWT as an inverse Fourier transform enables you to use the
computationally-efficient fft and i fft algorithms to reduce the cost of computing
convolutions.

The cwt function implements the CWT.
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Inverse Continuous Wavelet Transform

The icwt function implements the inverse CWT. Using icwt requires that you obtain
the CWT from cwt.

Because the CWT is a redundant transform, there is not a unique way to define the
inverse. The inverse CWT implemented in the Wavelet Toolbox uses the analytic Morse
wavelet and L1 normalization.

The inverse CWT is classically presented in the double-integral form. Assume you have a
wavelet with a Fourier transform that satisfies the admissibility condition:

jw |W(w)| ——————dw< e

|o]
For wavelets satisfying the admissibility condition and finite-energy functions, f(t), you
can define the inverse CWT as:

1 da
f(t) = @L jb<f(t),1//a’b(t) >Vap® db g

For analyzing wavelets and functions satisfying the following conditions, a single
integral formula for the inverse CWT exists. These conditions are:

* The analyzed function, f(t), is real-valued and the analyzing wavelet has a real-valued
Fourier transform.

* The analyzed function, f(%), is real-valued and the Fourier transform of the analyzing
wavelet has support only on the set of nonnegative frequencies. This is referred to as
an analytic wavelet. A function whose Fourier transform only has support on the set
of nonnegative frequencies must be complex-valued.

The preceding conditions constrain the set of possible analyzing wavelets. Wavelets
supported by cwt are analytic. Because the toolbox only supports the analysis of real-
valued functions, the real-valued condition on the analyzed function is always satisfied.

To motivate the single integral formula, let y; and y, be two wavelets that satisfy the
following two-wavelet admissibility condition:

(@ Lva@ly, .
o]
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Define the constant:

AN
% A
_ 1@y (@)
C‘l/p‘l/z _J |o| do

The above constant may be complex-valued. Let f(¢) and g(¢) be two finite energy

functions. If the two-wavelet admissibility condition is satisfied, the following equality
holds:

Cyy, <f8>= ”<f,1//1 >< g,W > db%

where <, > denotes the inner product, * denotes the complex conjugate, and the
dependence of y; and y, on scale and position has been suppressed for convenience.

The key to the single integral formula for the inverse CWT is to recognize that the two-
wavelet admissibility condition can be satisfied even if one of the wavelets is not
admissible. In other words, it is not necessary that both y; and y, be separately
admissible. You can also relax the requirements further by allowing one of the functions
and wavelets to be distributions. By first letting g(¢) be the Dirac delta function (a
distribution) and also allowing wy, to be the Dirac delta function, you can derive the
single integral formula for the inverse CWT

1 oo d
() =2 Re {q,_l,g [ <r@w 0> 7“}

where Re{} denotes the real part.

The preceding equation demonstrates that you can reconstruct the signal by summing
the scaled CWT coefficients over all scales.

By summing the scaled CWT coefficients from select scales, you obtain an approximation
to the original signal. This is useful in situations where your phenomenon of interest is
localized in scale.

icwt implements a discretized version of the above integral.
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Interpreting Continuous Wavelet Coefficients

Because the CWT is a redundant transform and the CWT coefficients depend on the
wavelet, it can be challenging to interpret the results.

To help you in interpreting CWT coefficients, it is best to start with a simple signal to
analyze and an analyzing wavelet with a simple structure.

A signal feature that wavelets are very good at detecting is a discontinuity, or

singularity. Abrupt transitions in signals result in wavelet coefficients with large
absolute values.

For the signal create a shifted impulse. The impulse occurs at point 500.

x = zeros(1000,1);
% (500) 1;

For the wavelet, pick the Haar wavelet.

[~,psi,xval] = wavefun('haar',610);
plot(xval,psi); axis ([0 1 -1.5 1.5]);
title ('Haar Wavelet');
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To compute the CWT using the Haar wavelet at scales 1 to 128, enter:

CWTcoeffs = cwt(x,1:128, "haar');
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CWTcoeffs is a 128-by-1000 matrix. Each row of the matrix contains the CWT
coefficients for one scale. There are 128 rows because the SCALES input to cwt is 1:128.
The column dimension of the matrix matches the length of the input signal.

Recall that the CWT of a 1D signal is a function of the scale and position parameters. To
produce a plot of the CWT coefficients, plot position along the x-axis, scale along the y-
axis, and encode the magnitude, or size of the CW'T coefficients as color at each point in
the x-y, or time-scale plane.

You can produce this plot using cwt with the optional input argument "plot’.

cwt (x,1:128, 'haar', 'plot');
colormap jet; colorbar;
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The preceding figure was modified with text labels to explicitly show which colors
indicate large and small CWT coefficients.

You can also plot the size of the CWT coefficients in 3D with
cwt (x,1:64, '"haar', '3Dplot'); colormap jet;
where the number of scales has been reduced to aid in visualization.

Examining the CWT of the shifted impulse signal, you can see that the set of large CWT
coefficients is concentrated in a narrow region in the time-scale plane at small scales
centered around point 500. As the scale increases, the set of large CWT coefficients
becomes wider, but remains centered around point 500. If you trace the border of this
region, it resembles the following figure.
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This region is referred to as the cone of influence of the point =500 for the Haar wavelet.
For a given point, the cone of influence shows you which CWT coefficients are affected by
the signal value at that point.

To understand the cone of influence, assume that you have a wavelet supported on [-C,
C]. Shifting the wavelet by b and scaling by a results in a wavelet supported on [-Ca+b,

Ca+b]. For the simple case of a shifted impulse, 6(¢—17), the CWT coefficients are only
nonzero in an interval around t equal to the support of the wavelet at each scale. You can
see this by considering the formal expression of the CWT of the shifted impulse.

Clabst -1y @)= [ 6(t—r)%l//*(%b)dt :%v/* (=)
- a a

For the impulse, the CWT coefficients are equal to the conjugated, time-reversed, and
scaled wavelet as a function of the shift parameter, b. You can see this by plotting the
CWT coefficients for a select few scales.

subplot (311)
plot (CWTcoeffs (10,:)); title('Scale 10');
subplot (312)
plot (CWTcoeffs (50,:)); title('Scale 50");
subplot (313)
plot (CWTcoeffs (90,:)); title('Scale 90'");
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The cone of influence depends on the wavelet. You can find and plot the cone of influence
for a specific wavelet with conofinf.

The next example features the superposition of two shifted impulses,

6(¢—300)+ 8 —500) . In this case, use the Daubechies' extremal phase wavelet with four
vanishing moments, db4. The following figure shows the cone of influence for the points
300 and 500 using the db4 wavelet.
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Look at point 400 for scale 20. At that scale, you can see that neither cone of influence
overlaps the point 400. Therefore, you can expect that the CWT coefficient will be zero at
that point and scale. The signal is only nonzero at two values, 300 and 500, and neither
cone of influence for those values includes the point 400 at scale 20. You can confirm this
by entering:
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x = zeros(1000,1);

x([300 500]) = 1;

CWTcoeffs = cwt(x,1:128,'db4");
plot (CWTcoeffs (20,:)); grid on;
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Next, look at the point 400 at scale 80. At scale 80, the cones of influence for both points
300 and 500 include the point 400. Even though the signal is zero at point 400, you
obtain a nonzero CWT coefficient at that scale. The CWT coefficient is nonzero because
the support of the wavelet has become sufficiently large at that scale to allow signal
values 100 points above and below to affect the CWT coefficient. You can confirm this by
entering:

plot (CWTcoeffs (80,:));

grid on;
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In the preceding example, the CWT coefficients became large in the vicinity of an abrupt
change in the signal. This ability to detect discontinuities is a strength of the wavelet
transform. The preceding example also demonstrated that the CWT coefficients localize
the discontinuity best at small scales. At small scales, the small support of the wavelet
ensures that the singularity only affects a small set of wavelet coefficients.

To demonstrate why the wavelet transform is so adept at detecting abrupt changes in the
signal, consider a shifted Heaviside, or unit step signal.

x = [zeros (500,1); ones(500,1)1;
CWTcoeffs = cwt(x,1:64, 'haar','plot'); colormap jet;

=loix
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Similar to the shifted impulse example, the abrupt transition in the shifted step function
results in large CWT coefficients at the discontinuity. The following figure illustrates
why this occurs.
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v

In the preceding figure, the red function is the shifted unit step function. The black
functions labeled A, B, and C depict Haar wavelets at the same scale but different
positions. You can see that the CWT coefficients around position A are zero. The signal is
zero in that neighborhood and therefore the wavelet transform is also zero because any
wavelet integrates to zero.

Note the Haar wavelet centered around position B. The negative part of the Haar
wavelet overlaps with a region of the step function that is equal to 1. The CWT
coefficients are negative because the product of the Haar wavelet and the unit step is a
negative constant. Integrating over that area yields a negative number.

Note the Haar wavelet centered around position C. Here the CWT coefficients are zero.
The step function is equal to one. The product of the wavelet with the step function is
equal to the wavelet. Integrating any wavelet over its support is zero. This is the zero
moment property of wavelets.

At position B, the Haar wavelet has already shifted into the nonzero portion of the step
function by 1/2 of its support. As soon as the support of the wavelet intersects with the
unity portion of the step function, the CWT coefficients are nonzero. In fact, the situation
illustrated in the previous figure coincides with the CWT coefficients achieving their
largest absolute value. This is because the entire negative deflection of the wavelet
oscillation overlaps with the unity portion of the unit step while none of the positive
deflection of the wavelet does. Once the wavelet shifts to the point that the positive
deflection overlaps with the unit step, there will be some positive contribution to the
integral. The wavelet coefficients are still negative (the negative portion of the integral is
larger in area), but they are smaller in absolute value than those obtained at position B.
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The following figure illustrates two other positions where the wavelet intersects the

unity portion of the unit step.
A

[ ,
L]

In the top figure, the wavelet has just begun to overlap with the unity portion of the unit
step. In this case, the CWT coefficients are negative, but not as large in absolute value as
those obtained at position B. In the bottom figure, the wavelet has shifted past position B
and the positive deflection of the wavelet begins to contribute to the integral. The CWT
coefficients are still negative, but not as large in absolute value as those obtained at
position B.

You can now visualize how the wavelet transform is able to detect discontinuities. You
can also visualize in this simple example exactly why the CWT coefficients are negative
in the CWT of the shifted unit step using the Haar wavelet. Note that this behavior
differs for other wavelets.

x = [zeros (500,1); ones(500,1)1;

CWTcoeffs = cwt(x,1:64, 'haar','plot'); colormap jet;
% plot a few scales for visualization
subplot (311) ;

plot (CWTcoeffs (5,:)); title('Scale 5');
subplot (312) ;

plot (CWTcoeffs (10,:)); title('Scale 10'");
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subplot (313);
plot (CWTcoeffs (50,:)); title('Scale 50');

Next consider how the CWT represents smooth signals. Because sinusoidal oscillations
are a common phenomenon, this section examines how sinusoidal oscillations in the
signal affect the CWT coefficients. To begin, consider the sym4 wavelet at a specific scale

superimposed on a sine wave.

B
File Edit Yiew Insert Tools Deskkop ‘Window Help £l
NEds s R UDE L |3/ 0E][80

1000 2000 3000 4000 5000 6000 7000

Recall that the CWT coefficients are obtained by computing the product of the signal
with the shifted and scaled analyzing wavelet and integrating the result. The following

figure shows the product of the wavelet and the sinusoid from the preceding figure.
g
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You can see that integrating over this product produces a positive CWT coefficient. That
results because the oscillation in the wavelet approximately matches a period of the sine
wave. The wavelet is in phase with the sine wave. The negative deflections of the wavelet
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approximately match the negative deflections of the sine wave. The same is true of the
positive deflections of both the wavelet and sinusoid.

The following figure shifts the wavelet 1/2 of the period of the sine wave.
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Examine the product of the shifted wavelet and the sinusoid.

ST=E
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You can see that integrating over this product produces a negative CWT coefficient. That
results because the wavelet is 1/2 cycle out of phase with the sine wave. The negative
deflections of the wavelet approximately match the positive deflections of the sine wave.
The positive deflections of the wavelet approximately match the negative deflections of
the sinusoid.

Finally, shift the wavelet approximately one quarter cycle of the sine wave.
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The following figure shows the product of the shifted wavelet and the sinusoid.
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Integrating over this product produces a CWT coefficient much smaller in absolute value
than either of the two previous examples. That results because the negative deflection of
the wavelet approximately aligns with a positive deflection of the sine wave. Also, the
main positive deflection of the wavelet approximately aligns with a positive deflection of
the sine wave. The resulting product looks much more like a wavelet than the other two
products. If it looked exactly like a wavelet, the integral would be zero.

At scales where the oscillation in the wavelet occurs on either a much larger or smaller
scale than the period of the sine wave, you obtain CWT coefficients near zero. The
following figure illustrates the case where the wavelet oscillates on a much smaller scale
than the sinusoid.
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Product of the analyzing wavelat and sine wave

s

The product shown in the bottom pane closely resembles the analyzing wavelet.
Integrating this product results in a CWT coefficient near zero.

The following example constructs a 60-Hz sine wave and obtains the CWT using the

sym8 wavelet.

t = linspace(0,1,1000);
X = cos (2*pi*60*t);
CWTcoeffs = cwt(x,1:64,'sym8"', 'plot'); colormap jet;

STk
Fle Edit View Insert Tools Desktop Window Help 3
IR PRI EE

Absolute Values of Ca b Coeffi

ra= 12345

scales a

100 200 300 400 500 600 700 800 900 1000
time (or space) b

Note that the CWT coefficients are large in absolute value around scales 9 to 21. You can

find the pseudo-frequencies corresponding to these scales using the command:

freq = scal2frg(9:21,'sym8',1/1000) ;
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Note that the CWT coefficients are large at scales near the frequency of the sine wave.
You can clearly see the sinusoidal pattern in the CWT coefficients at these scales with
the following code.

surf (CWTcoeffs); colormap jet;
shading ('interp'); view(-60,12);

e

Fle Edit View Insert Tooks Desktop Window Help ~

DEede [F R OoPEL - [2|0EaO

The final example constructs a signal consisting of both abrupt transitions and smooth
oscillations. The signal is a 2-Hz sinusoid with two introduced discontinuities.

N = 1024;

t = linspace(0,1,1024);

x = 4*sin (4*pi*t);

X = x - sign(t - .3) - sign(.72 - t);
plot(t,x); xlabel('t'); ylabel('x');
grid on;

1-99



1 Getting Started with Wavelet Toolbox Software

= 1

Fle Edt View Insert Tools Desktop Window Help ~

NGES kA UDEL B 0E|a0

4
3
2
1
0
-, \ Vot
2
3
-4
5
6

0 01 0z 03 04 05 06 o7 08 09 1

Note the discontinuities near t=0.3 and t=0.7.

Obtain and plot the CWT using the sym4 wavelet.

CWTcoeffs = cwt(x,1:180, "'symd");
imagesc(t,1:180,abs (CWTcoeffs));
colormap jet; axis xy;

xlabel ('t'); ylabel('Scales');

) Figure 1 I8 =1 B
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Note that the CWT detects both the abrupt transitions and oscillations in the signal. The
abrupt transitions affect the CWT coefficients at all scales and clearly separate
themselves from smoother signal features at small scales. On the other hand, the
maxima and minima of the 2-Hz sinusoid are evident in the CWT coefficients at large
scales and not apparent at small scales.
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The following general principles are important to keep in mind when interpreting CWT
coefficients.

* Cone of influence— Depending on the scale, the CWT coefficient at a point can be
affected by signal values at points far removed. You have to take into account the
support of the wavelet at specific scales. Use conofinf to determine the cone of
influence. Not all wavelets are equal in their support. For example, the Haar wavelet
has smaller support at all scales than the sym4 wavelet.

+ Detecting abrupt transitions— Wavelets are very useful for detecting abrupt
changes in a signal. Abrupt changes in a signal produce relatively large wavelet
coefficients (in absolute value) centered around the discontinuity at all scales.
Because of the support of the wavelet, the set of CWT coefficients affected by the
singularity increases with increasing scale. Recall this is the definition of the cone of
influence. The most precise localization of the discontinuity based on the CWT
coefficients is obtained at the smallest scales.

+ Detecting smooth signal features— Smooth signal features produce relatively
large wavelet coefficients at scales where the oscillation in the wavelet correlates best
with the signal feature. For sinusoidal oscillations, the CWT coefficients display an
oscillatory pattern at scales where the oscillation in the wavelet approximates the
period of the sine wave.

The basic algorithm for the continuous wavelet transform (CWT) is:

1 Take a wavelet and compare it to a section at the start of the original signal.

2 Calculate a number, C, that represents how closely correlated the wavelet is with
this section of the signal. The larger the number C is in absolute value, the more the
similarity. This follows from the fact the CWT coefficients are calculated with an
inner product. See “Inner Products” on page 1-67 for more information on how inner
products measure similarity. If the signal energy and the wavelet energy are equal
to one, C may be interpreted as a correlation coefficient. Note that, in general, the
signal energy does not equal one and the CWT coefficients are not directly
interpretable as correlation coefficients.

As described in “Continuous and Discrete Wavelet Transforms” on page 1-45, the
CWT coefficients explicitly depend on the analyzing wavelet. Therefore, the CWT
coefficients are different when you compute the CWT for the same signal using
different wavelets.
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?

Signal

Wavelet

C=0.0102

3  Shift the wavelet to the right and repeat steps 1 and 2 until you've covered the whole
signal.

Wavelst |:>

4  Scale (stretch) the wavelet and repeat steps 1 through 3.

Sinal

Wavelst

C=02247
5 Repeat steps 1 through 4 for all scales.
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Critically-Sampled Discrete Wavelet Transform

Calculating wavelet coefficients at every possible scale is a fair amount of work, and it
generates an awful lot of data. What if we choose only a subset of scales and positions at
which to make our calculations?

It turns out, rather remarkably, that if we choose scales and positions based on powers of
two — so-called dyadic scales and positions — then our analysis will be much more
efficient and just as accurate. We obtain such an analysis from the discrete wavelet
transform (DWT). For more information on DWT, see “Algorithms” in the Wauvelet
Toolbox User's Guide.

An efficient way to implement this scheme using filters was developed in 1988 by Mallat
(see [Mal89] in “References” on page 1-129). The Mallat algorithm is in fact a classical
scheme known in the signal processing community as a two-channel subband coder (see
page 1 of the book Wauvelets and Filter Banks, by Strang and Nguyen [StrN96]).

This very practical filtering algorithm yields a fast wavelet transform — a box into which
a signal passes, and out of which wavelet coefficients quickly emerge. Let's examine this
in more depth.

One-Stage Filtering: Approximations and Details

For many signals, the low-frequency content is the most important part. It is what gives
the signal its identity. The high-frequency content, on the other hand, imparts flavor or
nuance. Consider the human voice. If you remove the high-frequency components, the
voice sounds different, but you can still tell what's being said. However, if you remove
enough of the low-frequency components, you hear gibberish.

In wavelet analysis, we often speak of approximations and details. The approximations
are the high-scale, low-frequency components of the signal. The details are the low-scale,
high-frequency components.

The filtering process, at its most basic level, looks like this.
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The original signal, S, passes through two complementary filters and emerges as two
signals.

Unfortunately, if we actually perform this operation on a real digital signal, we wind up
with twice as much data as we started with. Suppose, for instance, that the original
signal S consists of 1000 samples of data. Then the resulting signals will each have 1000
samples, for a total of 2000.

These signals A and D are interesting, but we get 2000 values instead of the 1000 we
had. There exists a more subtle way to perform the decomposition using wavelets. By
looking carefully at the computation, we may keep only one point out of two in each of
the two 2000-length samples to get the complete information. This is the notion of
downsampling. We produce two sequences called cA and cD.

— D | ~1000 samples @—- ~50 coefs

[S 1000 samples g | 1000 samples

—-@ ~1 080 samples IE—-@—- ~500 coefs

The process on the right, which includes downsampling, produces DWT coefficients.

To gain a better appreciation of this process, let's perform a one-stage discrete wavelet
transform of a signal. Our signal will be a pure sinusoid with high-frequency noise added
to it.

Here is our schematic diagram with real signals inserted into it.
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cD High Frequency
I_.C [ ey i
S ~500 DWT coefficients

JAVAVAS
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\—lj | . Py
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~500 DWT coefficients

The MATLAB code needed to generate s, cD, and cA is

s
= sin(20.*linspace(0,pi,1000)) + 0.5.*rand(1,1000);
[cA,cD] = dwt(s,'db2'");

where db2 is the name of the wavelet we want to use for the analysis.

Notice that the detail coefficients cD are small and consist mainly of a high-frequency
noise, while the approximation coefficients cA contain much less noise than does the
original signal.

[length (cA) length(cD)]

ans =
501 501

You may observe that the actual lengths of the detail and approximation coefficient
vectors are slightly more than half the length of the original signal. This has to do with
the filtering process, which is implemented by convolving the signal with a filter. The
convolution “smears” the signal, introducing several extra samples into the result.
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Multiple-Level Decomposition
The decomposition process can be iterated, with successive approximations being

decomposed in turn, so that one signal is broken down into many lower resolution
components. This is called the wavelet decomposition tree.

[
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Looking at a signal's wavelet decomposition tree can yield valuable information.
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Number of Levels

Since the analysis process is iterative, in theory it can be continued indefinitely. In
reality, the decomposition can proceed only until the individual details consist of a single
sample or pixel. In practice, you'll select a suitable number of levels based on the nature
of the signal, or on a suitable criterion such as entropy (see “Choosing the Optimal
Decomposition” in the Wavelet Toolbox User's Guide).
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Critically-Sampled Wavelet Reconstruction

We've learned how the discrete wavelet transform can be used to analyze, or decompose,
signals and images. This process is called decomposition or analysis. The other half of the
story is how those components can be assembled back into the original signal without
loss of information. This process is called reconstruction, or synthesis. The mathematical
manipulation that effects synthesis is called the inverse discrete wavelet transform

(IDWT).
To synthesize a signal using Wavelet Toolbox software, we reconstruct it from the

wavelet coefficients.
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Where wavelet analysis involves filtering and downsampling, the wavelet reconstruction
process consists of upsampling and filtering. Upsampling is the process of lengthening a
signal component by inserting zeros between samples.
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Signalcomponant Upsampled signal companent

The toolbox includes commands, like idwt and waverec, that perform single-level or
multilevel reconstruction, respectively, on the components of 1-D signals. These
commands have their 2-D and 3-D analogs, idwt2, waverec?2, idwt3, and waverec3.
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Reconstruction Filters

The filtering part of the reconstruction process also bears some discussion, because it is
the choice of filters that is crucial in achieving perfect reconstruction of the original
signal.

The downsampling of the signal components performed during the decomposition phase
introduces a distortion called aliasing. It turns out that by carefully choosing filters for
the decomposition and reconstruction phases that are closely related (but not identical),
we can “cancel out” the effects of aliasing.

A technical discussion of how to design these filters is available on page 347 of the book
Wavelets and Filter Banks, by Strang and Nguyen. The low- and high-pass decomposition
filters (L. and H), together with their associated reconstruction filters (I.' and H'), form a
system of what is called quadrature mirror filters:

ook
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Decompasitian Recanstructian

Reconstructing Approximations and Details

We have seen that it is possible to reconstruct our original signal from the coefficients of
the approximations and details.

HI
cb —‘®—‘
~500 coefs
1000 samples
o —O—f]
~50 cosk

It is also possible to reconstruct the approximations and details themselves from their
coefficient vectors. As an example, let's consider how we would reconstruct the first-level
approximation A1 from the coefficient vector cAl.
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We pass the coefficient vector cA1 through the same process we used to reconstruct the
original signal. However, instead of combining it with the level-one detail cD1, we feed in
a vector of zeros in place of the detail coefficients vector:

=500 zaros
10080 samples

A1 —-@—

~500 coefs

The process yields a reconstructed approximation A1, which has the same length as the
original signal S and which is a real approximation of it.

Similarly, we can reconstruct the first-level detail D1, using the analogous process:

=500 coefs mefs r
!3 3 samples
=500 zeros

The reconstructed details and approximations are true constituents of the original signal.
In fact, we find when we combine them that

A, +D,=8.

Note that the coefficient vectors cAl and cD1 — because they were produced by
downsampling and are only half the length of the original signal — cannot directly be
combined to reproduce the signal. It is necessary to reconstruct the approximations and
details before combining them.

Extending this technique to the components of a multilevel analysis, we find that similar
relationships hold for all the reconstructed signal constituents. That is, there are several
ways to reassemble the original signal:
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Wavelets From Conjugate Mirror Filters

In the section “Reconstruction Filters” on page 1-108, we spoke of the importance of
choosing the right filters. In fact, the choice of filters not only determines whether perfect
reconstruction is possible, it also determines the shape of the wavelet we use to perform
the analysis.

To construct a wavelet of some practical utility, you seldom start by drawing a waveform.
Instead, it usually makes more sense to design the appropriate quadrature mirror filters,
and then use them to create the waveform. Let's see how this is done by focusing on an
example.

Consider the low-pass reconstruction filter (L") for the db2 wavelet.

The filter coefficients can be obtained from the dbaux function. By reversing the order of
the scaling filter vector and multiplying every even element (indexing from 1) by (-1), you
obtain the high-pass filter.

Repeatedly upsampling by two and convolving the output with the scaling filter produces
the Daubechies' extremal phase wavelet.

L = dbaux(2);

H wrev (L) .*[1 -1 1 -11;

HU = dyadup (H,0);

HU = conv (HU, L) ;

plot (HU); title('lst Iteration');

H1 = conv(dyadup (HU,0),L);
H2 = conv(dyadup(H1,0),L);
H3 = conv (dyadup (H2,0),L);
H4 = conv (dyadup (H3,0),L);
figure;

for k =1:4
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subplot(2,2,k);

eval (['plot (H' num2str(k) ')']);
axis tight;

end
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The curve begins to look progressively more like the db2 wavelet. This means that the
wavelet's shape is determined entirely by the coefficients of the reconstruction filters.

This relationship has profound implications. It means that you cannot choose just any
shape, call it a wavelet, and perform an analysis. At least, you can't choose an arbitrary
wavelet waveform if you want to be able to reconstruct the original signal accurately.
You are compelled to choose a shape determined by quadrature mirror decomposition
filters.

Scaling Function

We've seen the interrelation of wavelets and quadrature mirror filters. The wavelet
function y is determined by the high-pass filter, which also produces the details of the
wavelet decomposition.

There is an additional function associated with some, but not all, wavelets. This is the so-
called scaling function, ¢. The scaling function is very similar to the wavelet function. It
1s determined by the low-pass quadrature mirror filters, and thus is associated with the
approximations of the wavelet decomposition.

In the same way that iteratively upsampling and convolving the high-pass filter produces
a shape approximating the wavelet function, iteratively upsampling and convolving the
low-pass filter produces a shape approximating the scaling function.
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Wavelet Synchrosqueezing

1-112

What is Wavelet Synchrosqueezing?

The wavelet synchrosqueezed transform is a time-frequency analysis method that is
useful for analyzing multicomponent signals with oscillating modes. Examples of signals
with oscillating modes include speech waveforms, machine vibrations, and physiologic
signals. Many of these real-world signals with oscillating modes can be written as a sum
of amplitude-modulated and frequency-modulated components. A general expression for
these types of signals with summed components is

K
Y Ay () cos2rgy t)),
k=1

where A (¢) is the slowly varying amplitude and ¢ (¢) is the instantaneous phase. A
truncated Fourier series, where the amplitude and frequency do not vary with time, is a
special case of these signals.

The wavelet transform and other linear time-frequency analysis methods decompose
these signals into their components by correlating the signal with a time-frequency atom
chosen from a dictionary [1]. The wavelet transform uses translated and scaled versions
of a mother wavelet as its time-frequency atom. Some time-frequency spreading is
associated with all of these time-frequency atoms, which affects the sharpness of the
signal analysis.

The wavelet synchrosqueezed transform is a time-frequency method that reassigns the
signal energy in frequency. This reassignment compensates for the spreading effects
caused by the mother wavelet. Unlike other time-frequency reassignment methods,
synchrosqueezing reassigns the energy only in the frequency direction, which preserves
the time resolution of the signal. By preserving the time, the inverse synchrosqueezing
algorithm can reconstruct an accurate representation of the original signal. To use
synchrosqueezing, each term in the summed components signal expression must be an
intrinsic mode type (IMT) function. For details on the criteria that constitute IMTs, see

[2].

Algorithm

The synchrosqueezing algorithm uses these steps.
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Obtain the CWT of the input signal. For use with synchrosqueezing, the CWT must
use an analytic wavelet to capture instantaneous frequency information.

Extract the instantaneous frequencies from the CWT output, Wy, using a phase

transform, @, . This phase transform is proportional to the first derivative of the
CWT with respect to the translation, u. In this definition of the phase transform, s is
the scale.

AWy (s,1)

C()f(s,u) = 2mW—f(s’u)

. f; . .
The scales are defined as s= -4, where fy 1s the peak frequency and fis the
frequency. f

To extract the instantaneous frequency, consider a simple sine wave, el2rlot

a Obtain the wavelet transform,
Wf (ei2irfot) — oi2nfou

where f(sf) is the Fourier transform of the wavelet at sf),.

b Take the partial derivative of the previous equation with respect to the
translation, u:

%Wf (eiZJrfOt) _ i%fof(fx)eﬂnfou

Divide the partial derivative by the wavelet transform and i27 to obtain the
instantaneous frequency, f,.

“Squeeze” the CWT over regions where the phase transform is constant. The
resulting instantaneous frequency value is reassigned to a single value at the
centroid of the CWT time-frequency region. This reassignment results in sharpened
output from the synchrosqueezed transform when compared to the CWT.

As described, synchrosqueezing uses the continuous wavelet transform (CWT) and its
first derivative with respect to translation. The CWT is invertible and since the
synchrosqueezed transform inherits the CWT invertibility property, the signal can be
reconstructed.
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Required Component Separation

With synchrosqueezing the signal components must be IMTs that are well separated in
the time-frequency plane. If this requirement is met, you can track the trajectory of the
instantaneous frequencies along a curve. The curves show the location of the maximum
energy as it varies over time for each signal mode. See wsstridge for a description of
the trajectory curves algorithm.

This inequality defines the required separation criteria:
) ) ]_ > )
OhO)=051(8) 2 L|0r®)+ %1 (1)
where (b’ is the instantaneous frequency and d is a positive separation constant [2]. To
determine this required separation, suppose a bump wavelet, x, has a Fourier transform

with support in the range [ex -Ae, + A] . Because the bump wavelet has a center

frequency of 3 Hz, use l:éﬂf - l,éﬂf + l} as the interval. Then solve A< ¢, _a for d
2r 2 22 2 1+d

to get d > i for the bump wavelet.
To show this separation requirement for the bump wavelet, consider a signal composed of
cos(27(0.1¢)) + sin((27(0.2¢)) . Using the bump wavelet to obtain the CWT, the

instantaneous phase of the cosine is ¢ () =0.1¢, and the instantaneous frequency is the
first derivative, 0.1. Likewise, for the sine component, the instantaneous frequency is 0.2.

. . 1 . .
The separation inequality, |0.1| > —|O.3| , 1s true. Therefore, the two signal components
are IMT functions and are separaéed enough to use the synchrosqueezed transform.

If you use higher frequencies, such as 0.3 and 0.4 for the instantaneous frequencies, the

. o 1 S .
inequality is |0.1| > Z|O.7| , which is not true. Because these signal components are not

well-separated IMTs the signal, cos(27(0.3t)) + sin((27(0.4¢)), is not appropriate for use
with the synchrosqueezed transform.
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Examples
CWT vs. Synchrosqueezed Transform Smearing

Comparing the CWT with the synchrosqueezed transform of a quadratic chirp shows
reduced energy smearing for the synchrosqueezed transform result.

load quadchirp;

Fs = 1000;

[wt, f] = cwt (quadchirp, 'bump',Fs);

subplot (2,1,1);

hp = pcolor (tquad, £f,abs (wt));

hp.EdgeColor = 'none';

xlabel ('Time (secs)'); ylabel ('Frequency (Hz)');
title ('CWT of Quadratic Chirp');

subplot (2,1,2);

wsst (quadchirp, Fs, 'bump')
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CWT of Quadratic Chirp
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Wavelet Synchrosqueezed Transform
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Low-Frequency vs. High-Frequency Component Separation

This example shows the separation needed between signal components to obtain usable
results from the synchrosqueezed transform. The signal components are 0.025, 0.05, 0.20,
and 0.225 cycles per sample. The high- frequency components, 0.20 and 0.225, do not
have not enough separation, so you cannot express the whole signal a sum of well-
separated IMTs.

Define the signal and plot the synchrosqueezed components.

t = 0:2000;

x1l = cos (2*pi*.025*t);
X2 = cos(2* pi*.05*t);
x3 cos (2*pi*.20*t);
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x4 cos (2*pi*.225*t);

X =x1+x2+x3+x4;

[sst, £] wsst (x) ;

contour (t, f,abs (sst));

xlabel ('Time") ;

ylabel ('Normalized Frequency');

title ('Inadequate High-Frequency Separation')

Inadequate HighFrequency Separation
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Increase the separation of the high-frequency components, and then plot the

synchrosqueezed components again.

x4 cos (2*pi*.3*t);
X =x1+x2+x3+x4;
[sst, £] WSSt (x);
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Mormalized Frequency
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contour (t, f,abs (sst));

xlabel ('Time") ;

ylabel ('Normalized Frequency');

title ('Adequate High-Frequency Separation')

Adequate High-Frequency Separation
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All the signal components are now well-separated IMTs and are separated enough to
distinguish from each other. This signal is appropriate for use with the synchrosqueezing
algorithm.

Region with Inadequate Separation

This example shows a signal with two linear chirps. A linear chirp is defined as



Wavelet Synchrosqueezing

2
£(2) = cos ¢+2ﬂ(fot+ %] .

Its first derivative, f +mt, defines the instantaneous frequency line. Use the bump
wavelet and its separation constant of 0.25. To determine the region where the two chirp
signals with instantaneous frequencies of 0.4 and 0.1 cycles per sample are not separated
enough, solve this equation:

—0.15 ——x+0.4 and yy = 0.15 x+0.1 are the instantaneous frequency lines of the
Chlrp;OOO 1000
t = 0:2000;

yl = chirp(t,0.4,1000,0.25);

y2 = chirp(t,0.1,1000,0.25);

y = yl+yz;

wsst (y, "bump")

xlabel ('Samples');

hl = 1line([583 583], [0 0.5]);
h2 = line([1417 14171, [0 0.51);
hl.Color='white';
h2.Color='white';
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Wavelet Synchrosqueezed Transform
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The vertical lines are the bounds of the region . They indicate that not enough separation
occurs at sample 583 and sample 1417. In the region between the vertical lines, the
signal does not consist of well-separated IMTs. In the regions outside the vertical lines,
the signal has well-separated IMTs. You can obtain good results from the
synchrosqueezed transform in these regions.
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Introduction to Wavelet Families

Several families of wavelets that have proven to be especially useful are included in this
toolbox. What follows is an introduction to some wavelet families.
+ “Haar” on page 1-123

+ “Daubechies” on page 1-123

+  “Biorthogonal” on page 1-124

+ “Coiflets” on page 1-126

+ “Symlets” on page 1-126

+ “Morlet” on page 1-126

+ “Mexican Hat” on page 1-127

+ “Meyer” on page 1-127

* “Other Real Wavelets” on page 1-128

+ “Complex Wavelets” on page 1-128

To explore all wavelet families on your own, check out the Wavelet Display tool:

1 Type at the MATLAB command line. The Wavelet Analyzer appears.

[« Wavelet Analyzer felfe ==

File Window Help ~

One Dimensiona ] Specialized Tools 1-D

Wavelet 1-D SWT Denoising 1-D

Wavelet Packet 1-D Density Estimation 1-D

Regression Estimation 1-D

Sompiex Continuous Wavelol D Wavelet Coeficients Selection 1D

l
l
[ Continuous Wavelet 1-D
l
l

Contiucus Wavalel LO(Usino B0 Fractional Brownian Generation 1-D

Matehing Pursuit 1-D

Two-Dimensional |

[ Wavelet2-D ]

Specialized Tools 2-D

[ Wavelet Packet 2D )

True Compression 2D

[ Directional Continuous Wavelet Transform 2-D ]

SWT Denoisin 92D

‘ Three-Dimensional ‘ [ Wavelet Coefficients Selection 2-D

Wavelet 2D ] Image Fusion
Mltiple 1.0 Display
| r—— || e )
l Multvariats Denoising ] l Wavelet Packet Display ]
[ Multiscale Princ. Comp. Analysis ]
Extension

Wavelet Design l Signal Extension ]

M e ]‘ | —r—— ]

Close

2  (Click the Wavelet Display menu item. The Wavelet Display tool appears.
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3 Select a family from the Wavelet menu at the top right of the tool.

4  Click the Display button. Pictures of the wavelets and their associated filters
appear.

5 Obtain more information by clicking the information buttons located at the right.

Haar

Any discussion of wavelets begins with Haar wavelet, the first and simplest. The Haar
wavelet 1s discontinuous, and resembles a step function. It represents the same wavelet
as Daubechies db1.

1

a Waveket functian psi

-1

Q Q35 1

Daubechies

Ingrid Daubechies, one of the brightest stars in the world of wavelet research, invented
what are called compactly supported orthonormal wavelets — thus making discrete
wavelet analysis practicable.

The names of the Daubechies family wavelets are written dbN, where N is the order, and
db the “surname” of the wavelet. The db1l wavelet, as mentioned above, is the same as
Haar wavelet. Here are the wavelet functions psi of the next nine members of the family:

-1 " - -1
o ] F) El o = 4 o = 4 [ o F) 4 ) [ o » ]

-1 -1 -t -
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You can obtain a survey of the main properties of this family by typing waveinfo ('db"')
from the MATLAB command line. See “Daubechies Wavelets: dbN” in the Wavelet
Toolbox User's Guide for more detail.

Biorthogonal

This family of wavelets exhibits the property of linear phase, which is needed for signal
and image reconstruction. By using two wavelets, one for decomposition (on the left side)
and the other for reconstruction (on the right side) instead of the same single one,
interesting properties are derived.
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You can obtain a survey of the main properties of this family by typing
waveinfo ('bior') from the MATLAB command line. See “Biorthogonal Wavelet Pairs:
biorNr.Nd” in the Wavelet Toolbox User's Guide for more detail.
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1-126

Coiflets

Built by I. Daubechies at the request of R. Coifman. The wavelet function has 2N
moments equal to 0 and the scaling function has 2N-1 moments equal to 0. The two
functions have a support of length 6/N-1. You can obtain a survey of the main properties
of this family by typing waveinfo ('coif') from the MATLAB command line. See
“Coiflet Wavelets: coifN” in the Wavelet Toolbox User's Guide for more detail.

o o

ol o

- -1 -1 -t -1

2 L L] = {1} L] 5 0 (] o 5 L] L= 1] o3 0 m @D =

coifi coif? coif3 coifd coifs

=

Symlets

The symlets are nearly symmetrical wavelets proposed by Daubechies as modifications to
the db family. The properties of the two wavelet families are similar. Here are the

wavelet functions psi.

-1
+ Q H + B L] H

symz2 - syma sym sy:rnS

symeé sym7 sym8
You can obtain a survey of the main properties of this family by typing

waveinfo ('sym') from the MATLAB command line. See “Symlet Wavelets: symN” in
the Wavelet Toolbox User's Guide for more detail.

Morlet

This wavelet has no scaling function, but is explicit.
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Wavelet function psi

£ -6 4 -2 0 2 4 B B8
You can obtain a survey of the main properties of this family by typing

waveinfo ('morl') from the MATLAB command line. See “Morlet Wavelet: morl” in the
Wavelet Toolbox User's Guide for more detail.

Mexican Hat

This wavelet has no scaling function and is derived from a function that is proportional
to the second derivative function of the Gaussian probability density function. It is also
knows as the Ricker wavelet.

Wave et function psi

B 6 -4 -2 0 2 4 6 B8
You can obtain a survey of the main properties of this family by typing

waveinfo ('mexh') from the MATLAB command line. See “Mexican Hat Wavelet:
mexh” in the Wavelet Toolbox User's Guide for more information.

Meyer

The Meyer wavelet and scaling function are defined in the frequency domain.
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Wavelet function psi

-5 n 5
You can obtain a survey of the main properties of this family by typing

waveinfo ('meyer') from the MATLAB command line. See “Meyer Wavelet: meyr” in
the Wavelet Toolbox User's Guide for more detail.

Other Real Wavelets

Some other real wavelets are available in the toolbox:

* Reverse Biorthogonal
* Gaussian derivatives family

+ FIR based approximation of the Meyer wavelet

See “Additional Real Wavelets” in the Wavelet Toolbox User's Guide for more
information.

Complex Wavelets

Some complex wavelet families are available in the toolbox:

*  Gausslan derivatives
* Morlet
*  Frequency B-Spline

+ Shannon

See “Complex Wavelets” in the Wavelet Toolbox User's Guide for more information.
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Using Wavelets

This chapter takes you step-by-step through examples that teach you how to use the
graphical tools and command-line functions.

“Introduction to Wavelet Toolbox App and Functions” on page 2-2

“Wavelets: Working with Images” on page 2-3

“Density Estimation Using Wavelets” on page 2-10

“1-D Wavelet Coefficient Selection Using the Wavelet Analyzer App” on page 2-15
“2-D Wavelet Coefficient Selection Using the Wavelet Analyzer App” on page 2-24
“1-D Extension” on page 2-30

“2-D Extension” on page 2-37

“Image Fusion” on page 2-40

“1-D Fractional Brownian Motion Synthesis” on page 2-48

“New Wavelet for CWT” on page 2-54
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Introduction to Wavelet Toolbox App and Functions

2-2

Wavelet Toolbox software contains graphical tools and command-line functions that let
you

Examine and explore properties of individual wavelets and wavelet packets
Examine statistics of signals and signal components

Perform a continuous wavelet transform of a 1-D signal

Perform discrete analysis and synthesis of 1-D and 2-D signals

Perform wavelet packet analysis of 1-D and 2-D signals

Compress and remove noise from signals and images

In addition to the above, the toolbox makes it easy to customize the presentation and
visualization of your data. You choose

Which signals to display
A region of interest to magnify

A coloring scheme for display of wavelet coefficient details

Note All the Wavelet Analyzer app tools described here let you import information
from and export information to either the disk or workspace.




Wavelets: Working with Images

Wavelets: Working with Images

This section provides additional information about working with images in the Wavelet
Toolbox software. It describes the types of supported images and how the MATLAB
environment represents them, as well as techniques for analyzing color images.

Understanding Images in the MATLAB Environment

The basic data structure in MATLAB is the rectangular matrix, an ordered set of real or
complex elements. This object is naturally suited to the representation of images, which
are real-valued, ordered sets of color or intensity data. (This toolbox does not support
complex-valued images.)

The word pixel is derived from picture element and usually denotes a single dot on a
computer display, or a single element in an image matrix. You can select a single pixel
from an image matrix using normal matrix subscripting. For example:

I(2,15)

returns the value of the pixel at row 2 and column 15 of the image I. By default,
MATLAB scales images to fill the display axes; therefore, an image pixel may use more
than a single pixel on the screen.

Indexed Images

A typical color image requires two matrices: a colormap and an image matrix. The
colormap is an ordered set of values that represent the colors in the image. For each
image pixel, the image matrix contains a corresponding index into the colormap. (The
elements of the image matrix are floating-point integers, or flints, which MATLAB stores
as double-precision values.)

The size of the colormap matrix is n-by-3 for an image containing n colors. Each row of
the colormap matrix is a 1-by-3 red, green, blue (RGB) color vector

color = [R G B]

that specifies the intensity of the red, green, and blue components of that color. R, G, and
B are real scalars that range from 0.0 (black) to 1.0 (full intensity). MATLAB translates
these values into display intensities when you display an image and its colormap.
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When MATLAB displays an indexed image, it uses the values in the image matrix to look
up the desired color in the colormap. For instance, if the image matrix contains the value
18 in matrix location (86,198), the color for pixel (86,198) is the color from row 18 of the

colormap.
’
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jE 8 5 81030 15]
1548721 21 18 1
load clown
Amage () W 13 30 313
colornapinag} '“a,,___,_..-r"‘y

Tibe seed hmage Mz

et g u—
Colormap Matro

Outside MATLAB, indexed images with n colors often contain values from 0 to n—1.
These values are indices into a colormap with 0 as its first index. Since MATLAB
matrices start with index 1, you must increment each value in the image, or shift up the
image, to create an image that you can manipulate with toolbox functions.

Wavelet Decomposition of Indexed Images
Indexed images can be thought of as scaled intensity images, with matrix elements

containing only integers from 1 to n, where n is the number of discrete shades in the
image.
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If the colormap is not provided, the Wavelet Analyzer app displays the image and
processing results using a monotonic colormap with max (max (X)) -min (min (X)) +1
colors.

Since the image colormap is only used for display purposes, some indexed images may
need to be preprocessed to achieve the correct results from the wavelet decomposition.

In general, color indexed images do not have linear, monotonic colormaps and need to be
converted to the appropriate gray-scale indexed image before performing a wavelet
decomposition.

How Decompositions Are Displayed

Note that the coefficients, approximations, and details produced by wavelet
decomposition are not indexed image matrices.

To display these images in a suitable way, the Wavelet Analyzer app follows these rules:

*  Reconstructed approximations are displayed using the colormap map.

* The coefficients and the reconstructed details are displayed using the colormap map
applied to a rescaled version of the matrices.

RGB (Truecolor) Images

An RGB image, sometimes referred to as a truecolor image, is stored in MATLAB as an
m-by-n-by-3 data array that defines red, green, and blue color components for each
individual pixel. RGB images do not use a palette. The color of each pixel is determined
by the combination of the red, green, and blue intensities stored in each color plane at
the pixel's location. Graphics file formats store RGB images as 24-bit images, where the
red, green, and blue components are 8 bits each. This yields a potential of 16 million
colors.

The precision with which a real-life image can be replicated led to the nickname
“truecolor image.” An RGB MATLAB array can be of class double, single, uint8, or
uint16. In an RGB array of class double, each color component is a value between 0
and 1.

The color components of an 8-bit RGB image are integers in the range [0, 255] rather
than floating-point values in the range [0, 1].
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Wavelet Decomposition of Truecolor Images

The truecolor images analyzed are m-by-n-by-3 arrays of uint8. Each of the three-color
components is a matrix that is decomposed using the 2-D wavelet decomposition scheme.

Other Images

Wavelet Toolbox software lets you work with some other types of images. Using the
imread function, the various tools using images try to load indexed images from files
that are not MAT files (for example, PCX files).

These tools are:

*  2-D Discrete Wavelet Analysis
+  2-D Wavelet Packet Analysis
+ 2-D Stationary Wavelet Analysis

+ 2-D Extension tool
For more information on the supported file types, type help imread.

Use the imfinfo function to find the type of image stored in the file. If the file does not
contain an indexed image, the load operation fails.

Image Conversion

Image Processing Toolbox software provides a comprehensive set of functions that let you
easily convert between image types. If you do not have Image Processing Toolbox
software, the examples below demonstrate how this conversion may be performed using
basic MATLAB commands.

Example 1: Converting Color Indexed Images

load xpmndrll

whos

Name Size Bytes Class

X2 192x200 307200 double array
map 64x3 1536 double array
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image (X2)
title('Original Color Indexed Image')
colormap (map); colorbar

Orignal Color ndeed Imags

The color bar to the right of the image is not smooth and does not monotonically progress
from dark to light. This type of indexed image is not suitable for direct wavelet
decomposition with the toolbox and needs to be preprocessed.

First, separate the color indexed image into its RGB components:

R = map(X2,1); R = reshape(R,size(X2));
G = map(X2,2); G = reshape(G,size(X2));
B = map(X2,3); B = reshape(B,size(X2));

Next, convert the RGB matrices into a gray-scale intensity image, using the standard
perceptual weightings for the three-color components:

Xrgb = 0.2990*R + 0.5870*G + 0.1140*B;

Then, convert the gray-scale intensity image back to a gray-scale indexed image with 64
distinct levels and create a new colormap with 64 levels of gray:

n = 64; % Number of shades in new indexed image
X round (Xrgb* (n-1)) + 1;
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map2 = gray(n);

figure

image (X), title('Processed
Gray Scale Indexed Image')
colormap (map2), colorbar

Proceczad Gray Scale ndexed mage
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40
100 a0
120

20

20 40 =) 20 100 120 140 B0 120 200

The color bar of the converted image is now linear and has a smooth transition from dark
to light. The image is now suitable for wavelet decomposition.

Finally, save the converted image in a form compatible with the Wavelet Toolbox
Wavelet Analyzer app:

baboon = X;

map = map2;
save baboon baboon map

Example 2: Converting an RGB TIF Image

Suppose the file myImage. tif contains an RGB image (noncompressed) of size S1xS2.
Use the following commands to convert this image:

A = imread('myImage.tif');
% A is an S1xS2x3 array of uint8.
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A = double(A);

Xrgb = 0.2990*A(:,:,1) + 0.5870*A(:,:,2) + 0.1140*A(:,:,3);
NbColors = 255;

X = wcodemat (Xrgb,NbColors) ;

map = pink(NbColors);

The same program can be used to convert BMP or JPEG files.
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This section takes you through the features of 1-D wavelet density estimation using one
of the Wavelet Toolbox specialized tools.

The toolbox provides Wavelet Analyzer app to estimate the density of a sample and
complement well known tools like the histogram (available from the MATLAB core) or
kernel based estimates.

For the examples in this section, switch the extension mode to symmetric padding, using
the command

dwtmode ('sym')

1-D Estimation Using the Wavelet Analyzer App
1  Start the Density Estimation 1-D Tool.
From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.
&) Wavelet Analyzer [E=3E=n =7

Flle Window Help ~

One-Dimensional Specialized Tools 1-D

[ Wavelet 1-D ]

l

SWT Denoisin g 1-D

Density Estimation 1D

Regression Estimation 1-D

Wavelet Coefficients Selection 1-D

Continuous Wavelel.DUsin FED) Fractional Brownian Generation 1-D

Matching Pursuit 1-D

Two-Dimensional

| a2 ]

Specialized Tools 2-D
[ Wavelet Packet 2D ]

True Ce on 2D

[ Directional Gontinuous Wavelet Transform 2-D ]

SWT Denoisin 92-D

Wavelet Coefficients Selection 2D

‘ Three Dimensional ‘

Wavelet 3D l Image Fusion

Wuitiple 1-0 Display
[ Mulisignal Analysis 1-D ] [ Wavelet Display J
| Wultvariate Denoising ] [ Wavelet Packet Display J
[ Wuliscale Princ. Comp. Analysis ]
Extension
Wavelet Design [ Signal Extension J
‘ l New Waeletfor CIT ] ‘ [ Image Extension J

Click the Density Estimation 1-D menu item. The discrete wavelet analysis tool
for 1-D density estimation appears.
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[ Density Estimation 1-D [=lf= =]
File Edit View Insert Took Window Help ~
Data (Size)
Wavelet
L evel
Noof <l i
Select thresholding
Lev it Seled  Thresh
5 [ J o.
4 - o
a1 |- A )
2 Il i )
1 o] 2] o

At the MATLAB command line, type

load exlcuspl;
In the Density Estimation 1-D tool, choose File > Import from Workspace.

When the Import from Workspace dialog box appears, select ex1cuspl. Click OK
to import the noisy cusp data.

The sample, a 64-bin histogram, and the processed data obtained after a binning are
displayed. In this example, we'll accept the default value for the number of bins

(250). The binned data, suitably normalized, will be processed by wavelet
decomposition.

3  Perform a Wavelet Decomposition of the binned data.

Select the sym6 wavelet from the Wavelet menu and select 4 from the Level menu,
and click the Decompose button. After a pause for computation, the tool displays
the detail coefficients of the decomposition of the binned data.
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4  Perform a density estimation.

Accept the defaults of global soft thresholding. The sliders located on the right of the
window control the level dependent thresholds, indicated by yellow dotted lines
running horizontally through the graphs on the left of the window.

Continue by clicking the Estimate button.

B Density Estimation 1-0 o [&][=
File View Insert Tools Window Help

Binned Data
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Powroxmatie 8 @ soft b
2
1
o o ekt Twesh
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[iE]
1 A [ r]os:
° 24 v el 052
04
1 sz
o 1 | I -
- Iné dependent threshoid seftings

Estmate

:
—r—
a FM%, «t{ K
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o [ e )00 ] carger (X IC¥]
% Jv Jwe)|_on o

You can see that the estimation process delivers a very irregular resulting density.
The density estimate (in yellow) is the normalized sum of the signals located below
it: the approximation a4 and the reconstructed details after coefficient thresholding.

5 Perform thresholding.

You can experiment with the various predefined thresholding strategies by selecting
the appropriate options from the menu located on the right of the window or directly
by dragging the yellow lines with the left mouse button. Let's try another estimation
method.

From the menu Select thresholding method, select the item By level threshold
2. Next, click the Estimate button.
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The estimated density is more satisfactory. It correctly identifies the smooth part of

the density and the cusp at 0.7.

Importing and Exporting Information from the Wavelet Analyzer App

The tool lets you save the estimated density to disk. The toolbox creates a MAT-file in the

current folder with a name you choose.

To save the estimated density, use the menu option File > Save Density. A dialog box
appears that lets you specify a folder and filename for storing the density. Type the name
dexlcusp. After saving the density data to the file dex1cusp.mat, load the variables
into your workspace:

load dexlcusp
whos

Name Size Bytes Class
thrParams 1x4 464 cell array
wname 1x4 8 char array
xdata 1x250 2000 double array
ydata 1x250 2000 double array
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The estimated density is given by xdata and ydata. The length of these vectors is of the
same as the number of bins you choose in step 4. In addition, the parameters of the
estimation process are given by the wavelet name in wname.

wname

wname =
sSymo6

and the level dependent thresholds contained in thrParams, which is a cell array of
length 4 (the level of the decomposition). For i from 1 to 4, thrParams{i} contains the
lower and upper bounds of the interval of thresholding and the threshold value (since
interval dependent thresholds are allowed). For more information, see “1-D Adaptive
Thresholding of Wavelet Coefficients”. For example, for level 1,

thrParams{1l}
ans =
0.0560 0.9870 2.1179

Note When you load data from a file using the menu option File > Load Data for
Density Estimate, the first 1-D variable encountered in the file is considered the signal.
Variables are inspected in alphabetical order.

At the end of this section, turn the extension mode back to zero padding using

dwtmode ('zpd'")
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1-D Wavelet Coefficient Selection Using the Wavelet Analyzer

App

This section takes you through the features of 1-D selection of wavelet coefficients using
one of the Wavelet Toolbox specialized tools. The toolbox provides the Wavelet Analyzer
app to explore some reconstruction schemes based on various wavelet coefficients
selection strategies:

Global selection of biggest coefficients (in absolute value)
By level selection of biggest coefficients
Automatic selection of biggest coefficients

Manual selection of coefficients

For this section, switch the extension mode to symmetric padding using the command

dwtmode ('sym"')

1

Start the Wavelet Coefficients Selection 1-D Tool.
From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.
4] Wavelet Analyzer [E=3 How |

File Window Help ~

One-Dimensional Specialized Tools 1-D

Wavelet 1-D SWT Denaising 1-D

Wavelet Packet 1-D Density Estimation 1-D

Regression Estimation 1-D

SemplexConinuous Waveiol 10 Wavelet Caeficients Selecion 1-D

l l
l l
’ Continuous Wavelet 1-D ]
l l
l l

Continuous Wavelet 1-0 (Using FFT) Fractional Erownian Generation 1-D

Matching Pursuit 1-D

Specialized Tools 2-D

| Waretpacke2 ]

True Compression 2-D

[ Directional Confinuous Wavelet Transform 2-D )

SWT Denaising 2-D

Wavelet Coefficients Selection 2-D

WD ]

‘ Three-Dimensional ‘

Multiple 1.0 Display

’ Multisignal Analysis 1-D ] l Wavelet Display l

[ Multivariate Denoising ] l Wavelet Packet Display l

| PRS——— ]

Extension

Wavelet Design l Signal Extension ]

‘ l New Wavelet for CAT ] ‘ l Image Extension ]
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Click the Wavelet Coefficients Selection 1-D menu item. The discrete wavelet
coefficients selection tool for 1-D signals appears.

B wavelet Cosfricients Selection 1-0 =3 on |
File  View Insert Tools Window Help =

| o B - : (ST —
2 Load data.

At the MATLAB command prompt, type

load noisbump;

In the Wavelet Coefficients Selection 1-D tool, select File > Import from
Workspace. When the Import from Workspace dialog box appears, select the
noisbump variable. Click OK to import the noisy bumps data

3 Perform a Wavelet Decomposition.

Select the db3 wavelet from the Wavelet menu and select 6 from the Level menu,
and then click the Analyze button.
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[ wsvelet Coefficients Selection 1-0 o=
File View Insert Tools Window Help N
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[l E Ty Lo 518

s [1048 |- 1048

P

Show Origindl Signs)

Close

The tool displays below the original signal (on the left) its wavelet decomposition: the
approximation coefficients A6 and detail coefficients from D6 at the top to D1 at the
bottom. In the middle of the window, below the synthesized signal (which at this step
is the same, since all the wavelet coefficients are kept) it displays the selected
coefficients.

Selecting Biggest Coefficients Globally

On the right of the window, find a column labeled Kept. The last line shows the total
number of coefficients: 1049. This is a little bit more than the number of
observations, which is 1024. You can choose the number of selected biggest
coefficients by typing a number instead of 1049 or by using the slider. Type 40 and
press Enter. The numbers of selected biggest coefficients level by level are updated
(but cannot be modified since Global is the current selection method). Then click the
Apply button. The resulting coefficients are now displayed.
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In the previous trial, the approximation coefficients were all kept. It is possible to
relax this constraint by selecting another option from the App. c¢fs menu
(Approximation Coefficients abbreviation). Choose the Unselect option and click the

Apply button.
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None of the approximation coefficients are kept.
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From the App. cfs menu, select the Selectable option. Type 80 for the number of

selected biggest coefficients and press Enter. Then, click the Apply button.
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Some of the approximation coefficients (15) have been kept.

Selecting Biggest Coefficients by Level

From the Define Selection method menu, select the By Level option. You can
choose the number of selected biggest coefficients by level or select it using the
sliders. Type 4 for the approximation and each detail, and then click the Apply

button.
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Wavelet Cosfficients Selection1-D S5 3]
]
File View lnsett Tools Window Help ~
Original Signal synthesized Signal Nata (Siza) |__noisbump (1024)
15 15 Wavaiat  [gp =3 -
‘ | el 5 =
10 10
N | e
J L 4 fl J L / \ \\ Niafing Selaction
By Level -
o h o/ Jl V \VT/*/‘/V.« \",-—# Ann s | Selectable -
| Selactan Rinas!
200 400 G600 800 1000 200 400 600 800 1000 Initial Kent
Original Coeficients ‘Selectad Cosficients w20 ] 4
ne 20 |- 4
1.1 11 t.t? M [ s — i a4
ne[ 68 | fC——-i 4
o N 1 11 . 1.1 ml | 4
1 LI I ! no (250 |11 4
‘ i[5 |y 4
o T T 5 [1049 | Lf I8
J . Apply Residuals
‘J' I show Original Signal
)
1 l
200 400 600 800 1000 200 400 600 800 1000
Xe ) ¥e )06+ ) [ center CXILY %= <>
)= | = Info V- History | << View Axes Sions,

Selecting Coefficients Manually

From the Define Selection method menu, select the Manual option. The tool
displays on the left part, below the original signal, its wavelet decomposition. At the
beginning, no coefficients are kept so no selected coefficient is visible and the
synthesized signal is null.
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Select 16 coefficients individually by double clicking each of them using the left
mouse button. The color of selected coefficients switches from green to yellow for the
details and from blue to yellow for the approximation, which appear on the left of the
window and appear in yellow on the middle part. Click the Apply button.
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You can deselect the currently selected coefficients by double clicking each of them.
Another way to select or deselect a set of coefficients is to use the selection box. Drag
a rubber band box (hold down the left mouse button) over a portion of the coefficient
axes (original or selected) containing all the currently selected coefficients. Click the
Unselect button located on the right of the window. Click the Apply button. The
tool displays the null signal again.

Note that when the coefficients are very close, it is easier to zoom in before selecting
or deselecting them.

Drag a rubber band box over the portion of the coefficient axes around the position
800 and containing all scales and click the Select button. Click the Apply button.
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This illustrates that wavelet analysis is a local analysis since the signal is perfectly
reconstructed around the position 800. Check the Show Original Signal to magnify
it.

Selecting Coefficients Automatically
From the Define Selection method menu, select the Stepwise movie option. The
tool displays the same initial window as in the manual selection mode, except for the

left part of it.

Let's perform the stepwise movie using the k biggest coefficients, from k = 1tok =
31 in steps of 1, click the Start button. As soon as the result is satisfactory, click the
Stop button.
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Save the synthesized signal.

Close

The tool lets you save the synthesized signal to disk. The toolbox creates a MAT-file
in the current folder with a name you choose.

To save the synthesized signal from the present selection, use the menu option File
> Save Synthesized Signal. A dialog box appears that lets you specify a folder and
filename for storing the signal and the wavelet name.

At the end of this section, turn back the extension mode to zero padding using the

command

dwtmode ('zpd')
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2-D Wavelet Coefficient Selection Using the Wavelet Analyzer

App

2-24

This section takes you through the features of 2-D selection of wavelet coefficients using
one of the Wavelet Toolbox specialized tools. The toolbox provides the Wavelet Analyzer
app to explore some reconstruction schemes based on various wavelet coefficient selection
strategies:

+ Global selection of biggest coefficients (in absolute value)
+ By level selection of biggest coefficients

+ Automatic selection of biggest coefficients.

This section will be short since the functionality are similar to the 1-D ones examined in
the previous section.

For this section, switch the extension mode to symmetric padding using the command
dwtmode ('sym')
1 Start the Wavelet Coefficients Selection 2-D Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.
4] Wavelet Analyzer [E=3 How |
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2-D Wavelet Coefficient Selection Using the Wavelet Analyzer App

Click the Wavelet Coefficients Selection 2-D menu item. The discrete wavelet

coefficients selection tool for images appears.

Wavelet Cofficients Selection 2-D

File View Insert Tools Window Help

Dala (Size)
Wavelet

Level

Initial

» 28888 &

App.dis | Select Al

[
1
I
1

[
1

Define Selection method

Selected Blagest

Kept

(=== W= I= W ==

Colorman pink

Erighines

N, T i) [T

| L

Load data.

At the MATLAB command prompt, type

load noiswom;

In the Wavelet Coefficients Selection 2-D tool, select File > Import from

Workspace. When the Import from Workspace dialog box appears, select the X

variable. Click OK to import the image.

Perform a Wavelet Decomposition.

Select the sym4 wavelet from the Wavelet menu and select 4 from the Level menu,

and then click the Analyze button.
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] Wavelet Coefficients Selection 2-D  Indexed Image =3 I3
File View lnset Tools Window Help
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wavelet  sm =4 -
Level

Analyze

Define Selection
Global
App. s Seled All
Selected Bioaest
as[1aaT]r 1 a4
D4 (232 ][ 1.0 232
pal g2 (s 72
D2 [2523 | . 1] 2523
D1 [ 7803 | I 11 7803

s (11874 v 11874

Original Dect Modified Decomposition at level 4

e ) ¥e ] ] [E]ea) X <>
v o ]‘ “2’;‘*’ H Info V= H History ‘ Ak s [ Closs ]

The tool displays its wavelet decomposition below the original image (on the left).
The selected coefficients are displayed in the middle of the window, below the
synthesized image (which, at this step, is the same since all the wavelet coefficients
are kept). There are 11874 coefficients, a little bit more than the original image
number of pixels, which is 96x96 = 9216.

Note The difference between 9216 and 11874 comes from the extra coefficients
generated by the redundant DWT using the current extension mode (symmetric,
'sym'). Because 96 is divisible by 24 = 16, using the periodic extension mode ('per')
for the DWT, you obtain for each level the minimum number of coefficients. More
precisely, if you type dwtmode ('per') and repeat steps 2 to 5, you obtain 9216
coefficients.

Selecting Biggest Coefficients Globally

On the right of the window, find a column labeled Kept. The last line shows the total
number of coefficients: 11874. This is a little bit more than the original image
number of pixels. You can choose the number of selected biggest coefficients by
typing a number instead of 11874, or by using the slider. Type 1100 and press



2-D Wavelet Coefficient Selection Using the Wavelet Analyzer App

Enter. The numbers of selected biggest coefficients level by level are updated (but
cannot be modified, since Global is the current selection method).

Then click the Apply button.

B Wavelet Coefficients Selection 2-D : Indexed Image [=][=][==]
File View Inset Tools Window Help ~
Original Image - size = (96, 96) Synthesized Image Data (Size) | noiswom (96x96)
] ."-? ‘Wavelet sym ~|4 -
ﬁ A Level 4 -
o

Define Selection
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App. cfs | Select Al -
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a4 [ 148 o rad
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Colorma|pink =
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Modified Decomposition at level 4 Briahine (=)&)

View Axes ‘ Close

Original Decomposition at level 4

Center

X=
Info Y=

‘ History

In the previous operation, all the approximation coefficients were kept. It is possible
to relax this constraint by selecting another option from the App. cfs menu (see “1-D
Wavelet Coefficient Selection Using the Wavelet Analyzer App” on page 2-15).

Selecting Biggest Coefficients by Level

Selecting Biggest Coefficients by Level. From the Define Selection method menu,
select the By Level option. You can choose the number of selected biggest
coefficients by level, or select it using the sliders. Type 100 for each detail, and then

click the Apply button.
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B Wavelet Coefficients Selection 2-D : Indexed Image S [@=]
File View lnset Tools Window Help ~
Original Image - size = (96, 96) Synthesized Image Data (Size)  noiswom (96:96)
y ¥ Wavelet sym -4 -
Level 4 -
Anaigze
Dafing Selection
By Level =
App.cts  SelectAll -

Selected Biaaest
a[aa Lof el
Ds[ 432 |+ 10
D3| 72 |« o 100
D2 | 2523 |+ [ +] 100
D1 7803 |« +] 100

s [ 11874 |« s 544

Apply Residuals

Colorma pink_».

o e 288

Orlginal Decomposition at level 4 Modified Decomposiltion at level 4

Brighnes . [ +]
xe L e JLme )| cemer (X ¥ = e
%HT e [ ” U || ity | Niew Ases: Close

Selecting Coefficients Automatically

From the Define Selection method menu, select the Stepwise movie option. The
tool displays its wavelet decomposition on the left, below the original image. At the
beginning, no coefficients are kept so the synthesized image is null. Perform the
stepwise movie using the k biggest coefficients, from k = 144 to k = 1500, in steps
of 20. Click the Start button. As soon as the result is satisfactory, click the Stop
button.
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[ Wavelet Cosfficients Selection 2-D : Indexed Image el@]=]

File View Inset Tools Window Help -

Original Image - size = (36, 36) Symihesized image Data (Size} | nolswom (96x96)
|Wavelet 4
Level

Set Stapwise Mo Parameters
Aop dfs Select All -
Min_(>0) 144
Step(>0) 20
Mare 1500

7| AutoPlay Start

QuitMovie

(Cotormalpink_+
: 4 o, <1255
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Center [ JL¥ ]

[ | View Axes ‘ Close

Info

We've stopped the movie at 864 coefficients (including the number of approximation
coefficients).

Save the synthesized image.

This tool lets you save the synthesized image to disk. The toolbox creates a MAT-file
in the current folder with a name you choose.

To save the synthesized image from the present selection, use the menu option File
> Save Synthesized Image. A dialog box appears that lets you specify a folder and
filename for storing the image and, in addition, the colormap and the wavelet name.

At the end of this section, turn back the extension mode to zero padding using the
command

dwtmode ('zpd")
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This section takes you through the features of 1-D extension or truncation using one of
the Wavelet Toolbox utilities.

1-D Extension Using the Command Line
The function wextend performs signal extension. For more information, see its reference
page.
1-D Extension Using the Wavelet Analyzer App
1  Start the Signal Extension Tool.
From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.
|4 Wavelet Analyzer [E=8 Hon =

File Window Help ~

One-Dimensiona i Specialized Tools 1-D

Wavelet 1-D SWT Denoising 1-D

\Wavelet Packet 1-D Density Estimation 1D
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l
l
[ Continuous Wavelet 1-D
l
l

Confinuous Wavelet 1-D (Using FFT) Fractional Brownian Generation 1-D

Matching Pursuit 1-D

Two-Dimensional 1

l Wavelet 2-D ]

Specialized Tools 2-D
| Waret packe2 ]

True Compression 2-D
l Directional Continuous Wavelet Transform 2-D ]

SWT Denoising 2-D

Wavelet Coefficients Selection 2-D

‘ Three-Dimensional ‘

Wamaz0 ] —
Multiple 1.0 Display
[ ] ’ Wavelet Display ]
l ] ’ Wavelet Packet Display ]
[ Multiscale Princ. Comp. Analysis ]
Extension

Wavelet Design l Signal Extension ]

‘ l New Wavelet for CWT ] ‘ l Image Extension ]

Click the Signal Extension menu item.
2 Load data.

At the MATLAB command prompt, type



1-D Extension

load noisbloc;

In the Signal Extension tool, select File > Import from Workspace. When the
Import from Workspace dialog box appears, select the noisbloc variable. Click

OK to import the data
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Extend the signal.

Enter 1300 in the Desired Length box of the extended signal, and select the Left
option from the Direction to extend menu. Then accept the default Symmetric for
the Extension mode, and click the Extend button.
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B Sigra! Extension / Truncation
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The tool displays the original signal delimited by a red box and the transformed
signal delimited by a yellow box. The signal has been extended by left symmetric
boundary values replication.

Select the Both option from the Direction to extend menu and select the
Continuous option from the Extension mode menu. Click the Extend button.
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[ T ——
File View Inset Tools Window Help

Transformed signal

= Original signal

0
ik
b il
L " i M
A

signal noisbloc

Length 1024
HextPowerof2 | 2048
Previous Power of | 512

DesiredLengtn | 1300

Direction to extend Bo.. v

Extension Moge
Continuous

Exend

Close

The signal is extended in both directions by replicating the first value to the left and

the last value to the right, respectively.

Extending Signal for SWT

Since the decomposition at level k of a signal using SWT requires that 2~k divides evenly
into the length of the signal, the tool provides a special option dedicated to this kind of

extension.

Select the For SWT option from the Extension mode menu. Click the Extend button.
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Since the signal is of length 1024 = 2710, no extension is needed so the Extend button
is ineffective.

From the File menu, choose the Example Extension option and select the last item of
the list.
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Extension Mode
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Since the signal is of length 1000 and the decomposition level needed for SWT is 10, the
tool performs a minimal right periodic extension. The extended signal is of length 1024.

Select 4 from the SWT Decomposition Level menu, and then click the Extend button.
The tool performs a minimal right periodic extension leading to an extended signal of
length 1008 (because 1008 is the smallest integer greater than 1000 divisible by 274 =
16).

Select 2 from the SWT Decomposition Level menu. Since 1000 is divisible by 4, no
extension is needed.

Truncating Signal
The same tool allows you to truncate a signal.

Since truncation is not allowed for the special mode For SWT, select the Periodic
option from the Extension mode menu. Type 900 for the desired length and press
Enter. Click the Truncate button.
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The tool displays the original signal delimited by a red box and the truncated signal
delimited by a yellow box. The signal has been truncated by deleting 100 values on the

right side.

Importing and Exporting Information from the Wavelet Analyzer App

This tool lets you save the transformed signal to disk. The toolbox creates a MAT-file in

the current folder with a name you choose.

To save the transformed signal, use the menu option File > Save Transformed Signal.
A dialog box appears that lets you specify a folder and filename for storing the image.
Type the name t frgbrk. After saving the signal data to the file t frgbrk.mat, load the

variable into your workspace:

load tfrgbrk
whos

Name

Size

Bytes

Class

tfrgbrk

1x900

7200

double array




2-D Extension

2-D Extension

This section takes you through the features of 2-D extension or truncation using one of
the Wavelet Toolbox utilities. This section is short since it is very similar to “1-D
Extension” on page 2-30.

2-D Extension Using the Command Line

The function wextend performs image extension. For more information, see its reference
page.

2-D Extension Using the Wavelet Analyzer App
1  Start the Image Extension Tool.
From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.
4] Wavelet Analyzer [E=3 How =

File Window Help ~
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Click the Image Extension menu item.

Extend (or truncate) the image.
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From the File menu, choose the Example Extension option and select the first
item of the list.

B imsge Bxtension /Truncation  indexed Image =)=

File View Inset Tools Window Help
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The tool displays the original image delimited by a red box and the transformed
image delimited by a yellow box. The image has been extended by zero padding. The
right part of the window allows you to control the parameters of the extension/
truncation process for the vertical and horizontal directions, respectively. The
possibilities are similar to the 1-D ones described in “1-D Extension” on page 2-30.

Importing and Exporting Information from the Wavelet Analyzer App

This tool lets you save the transformed image to disk. The toolbox creates a MAT-file in
the current folder with a name you choose.

To save the transformed image, use the menu option File > Save Transformed Image.

A dialog box appears that lets you specify a folder and filename for storing the image.
Type the name woman2. After saving the image data to the file woman2 .mat, load the
variable into your workspace:



2-D Extension

load woman?2
whos

352000 double array

woman?2

200x220

map

253x3

6120

double array

The transformed image is stored together with its colormap.
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This section takes you through the features of Image Fusion, one of the Wavelet Toolbox
specialized tools.

For the examples in this section, switch the extension mode to symmetric padding, using
the command:

dwtmode ('sym"')

The toolbox requires only one function for image fusion: wfusimg. You'll find full
information about this function in its reference page. For more details on fusion methods
see the wfusmat function.

In this section, you'll learn how to

* Load images

+  Perform decompositions

*  Merge images from their decompositions

* Restore images from their decompositions

+  Save image after fusion

Since you can perform analyses either from the command line or using the Wavelet
Analyzer app, this section has subsections covering each method.

The principle of image fusion using wavelets is to merge the wavelet decompositions of
the two original images using fusion methods applied to approximations coefficients and
details coefficients (see [MisMOPO03] and [Zee98] in “References” on page 1-129).

The two images must be of the same size and are supposed to be associated with indexed
images on a common colormap (see wextend to resize images).

Two examples are examined: the first one merges two different images leading to a new
image and the second restores an image from two fuzzy versions of an original image.



Image Fusion

Image Fusion Using the Command Line

Example 1: Fusion of Two Different Images

1

Load two original images: a mask and a bust.

load mask; X1 = X;
load bust; X2 = X;

Merge the two images from wavelet decompositions at level 5 using db2 by taking
two different fusion methods: fusion by taking the mean for both approximations and
details,

XFUSmean = wfusimg(X1,X2,'db2',5, 'mean', 'mean');

and fusion by taking the maximum for approximations and the minimum for the
details.

XFUSmaxmin = wfusimg(X1,X2,'db2',5, 'max', 'min');

Plot original and synthesized images.

colormap (map) ;

subplot (221), image(X1l), axis square, title('Mask')
subplot (222), image(X2), axis square, title('Bust')

subplot (223), image (XFUSmean), axis square,
title('Synthesized image, mean-mean')
subplot (224), image (XFUSmaxmin), axis square,

title('Synthesized image, max-min')
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Example 2: Restoration by Fusion from Fuzzy Images

1 Load two fuzzy versions of an original image.

load cathe 1; X1 = X;
load cathe 2; X2 = X;

2 Merge the two images from wavelet decompositions at level 5 using sym4 by taking
the maximum of absolute value of the coefficients for both approximations and
details.

XFUS = wfusimg(X1,X2,'sym4"',5, 'max', 'max"') ;

3  Plot original and synthesized images.

colormap (map) ;

subplot (221), image(X1l), axis square,
title('Catherine 1'")
subplot (222), image(X2), axis square,

title('Catherine 2'")
subplot (223), image (XFUS), axis square,
title('Synthesized image')
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Cathwrirm 1 Catherine 2

S0 100 150 200 2E0

The synthesized image is a restored version of good quality of the common
underlying original image.

Image Fusion Using the Wavelet Analyzer App
1 Start the Image Fusion Tool.
From the MATLAB prompt, type waveletAnalyzer.

to display the Wavelet Analyzer and then click the Image Fusion menu item to
display the Image Fusion Tool.
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2 Load original images.

At the MATLAB command prompt, type

load mask;




Image Fusion

In the Image Fusion tool, select File > Load or Import Image 1 > Import from
Workspace. When the Import from Workspace dialog box appears, select the X
variable, which loads the mask image.

Perform the same sequence choosing the X variable to load the bust image.

3  Perform wavelet decompositions.

Using the Wavelet and Level menus located to the upper right, determine the
wavelet family, the wavelet type, and the number of levels to be used for the
analysis.

For this analysis, select the db2 wavelet at level 5.
Click the Decompose button.

After a pause for computation, the tool displays the two analyses.
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4  Merge two images from their decompositions.

From Select Fusion Method frame, select the item mean for both Approx. and
Details. Next, click the Apply button.
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The synthesized image and its decomposition (which is equal to the fusion of the two
decompositions) appear. The new image produced by fusion clearly exhibits features
from the two original ones.

Let us now examine another example illustrating restoration using image fusion.

5 Restore the image using image fusion.

From the File menu, load Image 1 by selecting the MAT-file cathe 1.mat, and
Image 2 by selecting the MAT-file cathe 2.mat.

6 Using the Wavelet and Level menus, select the sym4 wavelet at level 5. Click the

Decompose button.

7 From Select Fusion Method frame, select the item max for both Approx. and
Details. Next, click the Apply button.
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The synthesized image is a restored version of good quality of the common
underlying original image.

Saving the Synthesized Image

The Image Fusion Tool lets you save the synthesized image to disk. The toolbox creates a
MAT-file in the current folder with a name you choose.

To save the synthesized image from the present selection, use the menu option File >
Save Synthesized Image.

A dialog box appears that lets you specify a folder and filename for storing the image.
After you save the image data to the file rescathe.mat, the synthesized image is given
by X and the colormap by map.
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This section takes you through the features of 1-D Fractional Brownian Motion Synthesis
using one of the Wavelet Toolbox specialized tools.

For the examples in this section, switch the extension mode to symmetric padding, using
the command

dwtmode ('sym"')

The toolbox requires only one function to generate a fractional Brownian motion signal:
wfbm. You'll find full information about this function in its reference page.

In this section, you'll learn how to

* Generate a fractional Brownian motion signal
* Look at its main properties

+ Save the synthesized signal

Since you can perform the generation either from the command line or using the Wavelet
Analyzer app, this section has subsections covering each method.

A fractional Brownian motion (fBm) is a continuous-time Gaussian process depending on
the Hurst parameter 0 < H < 1. It generalizes the ordinary Brownian motion
corresponding to H = 0.5 and whose derivative is the white noise. The fBm 1is self-
similar in distribution and the variance of the increments is given by

Var (fBm(t) -fBm(s)) = v |t-s|”(2H)

where v is a positive constant.

Fractional Brownian Motion Synthesis Using the Command Line

According to the value of H, the £Bm exhibits for H > 0.5, long-range dependence and for
H < 0.5, short or intermediate dependence.

Let us give an example of each situation using the wfbm file, which generates a sample
path of this process.

% Generate fBm for H = 0.3 and H = 0.7



1-D Fractional Brownian Motion Synthesis

H=20.3
fBm03 =

fBm07 =

w ="

Gener
fBm0O7

oC o° o° o° o°

; 1g = 1000;

db1l0'; ns =
ate

The last step i1s equivalent to
Define wavelet and level of decomposition
6;

= wfbm(H, 1g, 'plot',w,ns);

Set the parameter H and the sample length

Generate and plot wavelet-based fBm for H = 0.3
wfbm (H, 1g, 'plot'");

% Generate and plot wavelet-based fBm for H = 0.7
wfbm (H, 1g, 'plot") ;

It appears that fBmO07 clearly exhibits a stronger low-frequency component and has,

locally, a less irregular behavior.

Fractional Brownian Motion Synthesis Using the Wavelet Analyzer App

1  Start the Fractional Brownian Motion Synthesis Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears. Click Fractional Brownian Generation 1-D to
display the 1-D Fractional Brownian Motion Synthesis Tool.

v e
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2 Generate fBm.

From the Fractal Index edit button, type 0.3 and from the Seed frame, select the
item State and set the value to 0. Next, click the Generate button.
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The synthesized signal exhibits a locally highly irregular behavior.

Now let us try another value for the fractal index. From the Fractal Index edit
button, type 0.7 and from the Seed frame, select the item State and set the value to
0. Next, click the Generate button.
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The synthesized signal clearly exhibits a stronger low-frequency component and has
locally a less irregular behavior. These properties can be investigated by clicking the
Statistics button.

Saving the Synthesized Signal

The Fractional Brownian Motion Synthesis Tool lets you save the synthesized signal to
disk. The toolbox creates a MAT-file in the current folder with a name you choose.

To save the synthesized signal from the present selection, use the option File > Save
Synthesized Signal. A dialog box appears that lets you specify a folder and filename for
storing the signal. After saving the signal data to the file fbm07.mat, load the variables
into workspace.

load fbm07

whos

Name Size Bytes Class

FBM PARAMS 1x1 668 struct array
fbm07 1x1000 8000 double array

2-52




1-D Fractional Brownian Motion Synthesis

FBM PARAMS

FBM PARAMS =

SEED:

Wav:
Length:

H:
Refinement:

[2x1 double]
'dbl0"

1000

0.7000

6

The synthesized signal is given by fbm07. In addition, the parameters of the generation
are given by FBM PARAMS, which is a cell array of length 5.
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New Wavelet for CWT

2-54

This section takes you through the features of New Wavelet for CWT, one of the Wavelet
Toolbox specialized tools.

The toolbox requires only one function to design a new wavelet adapted to a given
pattern for CWT: pat2cwav. You'll find full information about this function in its
reference page.

In this section, you'll learn how to

* Load a pattern

* Synthesize a new wavelet adapted to the given pattern

* Detect patterns by CWT using the adapted wavelet

+  Compare the detection using both the adapted wavelet and well-known wavelets

+ Save the synthesized wavelet

Since you can perform the design of the new wavelet for CWT either from the command
line or using the Wavelet Analyzer app, this section has subsections covering each
method.

The principle for designing a new wavelet for CWT is to approximate a given pattern
using least squares optimization under constraints leading to an admissible wavelet well
suited for the pattern detection using the continuous wavelet transform (see [MisMOPO03]
in “References” on page 1-129).

New Wavelet for CWT Using the Command Line

The following example illustrates how to generate a new wavelet starting from a pattern.

o)

% Load original pattern: a pseudo sine one.
load ptpssinl;

% Variables X and Y contain the pattern.

whos
Name Size Bytes Class
IntVAL 1x1 8 double array




New Wavelet for CWT

Name Size Bytes Class
X 1x256 2048 double array
Y 1x256 2048 double array
caption 1x35 70 char array
IntVAL
IntVAL =

0.1592

The pattern on the interval [0,1] integrates to 0.1592.

So it is not a wavelet but it is a good candidate since it
oscillates like a wavelet.

plot(X,Y), title('Original Pattern')

o oo o°

Criginal Fatem

o

.

a a2 a4 o8 as 1

To synthesize a new wavelet adapted to the given pattern, use
a least squares polynomial approximation of degree 6 with
constraints of continuity at the beginning and the end of the
pattern.

[psi,xval,nc] = pat2cwav (Y, 'polynomial',6, 'continuous') ;

o o° o oP

)

% The new wavelet is given by xval and nc*psi.
plot(X,Y,"'-',xval,nc*psi,'--"),
title('Original Pattern and Adapted Wavelet (dashed line)')
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Let us notice that the version of the wavelet correctly
defined in order to be used in the CWT algorithm must be of
square norm equal to 1.

It is simply given by xval and psi.

New Wavelet for CWT Using the Wavelet Analyzer App

1 Start the New Wavelet for CWT Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears. Click the New Wavelet for CWT menu item to
display the Pattern Adapted Admissible Wavelet Design Tool.

4] Wovelet Anlyzer
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Close.

Load the original pattern.

The MAT-file defining the pattern can contain more than one variable. In that case,
the variable Y is considered if it exists; otherwise, the first variable is considered.

At the MATLAB command line, type
load ptpssinl;

In the Pattern Adapted Admissible Wavelet Design tool, from the File menu,
choose Import from Workspace. When the Import from Workspace dialog box
appears, select ptpssinl.mat. Click the OK button.
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The selected pattern denoted by F is defined on the interval [0, 1] and is of integral
0.1592. It is not a wavelet, but it is a good candidate because it oscillates like a
wavelet.

Perform pattern approximation.

Accept the default parameters leading to use a polynomial of degree 3 with
constraints of continuity at the borders 0 and 1, to approximate the pattern F. Click
the Approximate button.

After a pause for computation, the tool displays the new wavelet in green
superimposed with the original pattern in red.



New Wavelet for CWT
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The result is not really satisfactory. A solution is to increase the polynomial degree
to fit better the pattern.

5 Using the Polynomial Degree menu, increase the degree by selecting 6. Then click
the Approximate button again.
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The result is now of good quality and can be used for pattern detection.

6 Pattern detection using the new wavelet.

Click the Run button.

After a pause for computation, the tool displays the running signal and the pattern
detection by CWT using the adapted wavelet.
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The running signal is the superimposition of two dilated and translated versions of
the pattern F, namely F ( (t-20) /8) and F ( (t-40) /4). The two pairs (position,
scale) to be detected are given by (20, 8) and (40, 4) and are materialized by dashed
lines in the lower right graph of the contour plot of the CWT. The detection is perfect
because the two local maxima of the absolute values of the continuous wavelet

coefficients fit perfectly.

Using the Running signal frame, select the Noise check box to add an additive
noise to the previous signal. Click the Run button again.
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The quality of the detection is not altered at all.

Compare the adapted wavelet and well-known wavelets.

Let us now compare the performance for pattern detection of the adapted wavelet
versus well-known wavelets. Click the Compare button. A new window appears.
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This tool displays the pattern detection performed with the adapted wavelet on the
left and db1 wavelet (default) on the right. The two positions are perfectly detected
in both cases but scales are slightly underestimated by the db1 wavelet.

The tool allows you to generate various running signals and choose the wavelet to be
compared with the adapted one.

Click the Close button to get back to the main window.

Saving the New Wavelet

The New Wavelet for CWT Tool lets you save the synthesized wavelet. The toolbox
creates a MAT-file in the current folder with a name you choose.

To save the new wavelet from the present selection, use the option File > Save Adapted
Wavelet. A dialog box appears that lets you specify a folder and filename for storing the
data. After you save the wavelet data to the file newwavel .mat, the adapted wavelet is
given by X and Y.

2-63



2 Using Wavelets

Note that the version of the saved wavelet is correctly defined to be used in the CWT
algorithm and is such that its square norm is equal to 1.
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+ “Wavelet Families and Properties” on page 3-2
+ “Visualizing Wavelets, Wavelet Packets, and Wavelet Filters” on page 3-5
+ “Continuous Wavelet Analysis” on page 3-9

+ “Continuous Wavelet Transform and Inverse Continuous Wavelet Transform”
on page 3-11

+ “Discrete Wavelet Analysis” on page 3-16
+  “Lifting” on page 3-25
+ “Critically Sampled Wavelet Packet Analysis” on page 3-32
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Wavelet Families and Properties

This example shows how to find and display information about available wavelets. The
Wavelet Toolbox software contains an extensive selection of the most commonly-used
wavelets and orthogonal and biorthogonal wavelet filters. You also have the ability to
add your own filters to the toolbox.

Determine the existing wavelet families. Display the wavelet family names in the
command window.

waveletfamilies ('f'")

Display the names of all available wavelets in each family.
waveletfamilies ('a')

You can also use wavemngr to display the available wavelet families.
wavemngr ('read')

Use the wavelet family short name to determine what analysis an existing wavelet
supports.

The wavelet family short name for the Daubechies extremal-phase wavelets is 'db'.
waveinfo ('db")

Determine what analysis the Morlet wavelet supports. The wavelet family short name is
'morl’.

waveinfo ('morl")

Use the Wavelet Toolbox Wavelet Analyzer app to investigate wavelet families. To
start the interactive tool, enter waveletAnalyzer at the command line.
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Click Wavelet Display. Select the db4 wavelet and click Display.
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Visualizing Wavelets, Wavelet Packets, and Wavelet Filters

This example shows how to use wfilters, wavefun, and wpfun to obtain the filters,

wavelet, or wavelet packets corresponding to a particular wavelet family. You can
visualize 2-D separable wavelets with wavefun2.

Obtain the decomposition (analysis) and reconstruction (synthesis) filters for the
biorthogonal spline wavelet filters with 3 vanishing moments in the reconstruction filter
and 5 vanishing moments in the decomposition filter.

[LoD,HiD,LoR,HiR] = wfilters('bior3.5");

subplot (221) ;

stem (LoD, 'markerfacecolor', [0 0 1]); title('Lowpass Decomposition Filter');
subplot (222) ;

stem (LoR, 'markerfacecolor', [0 0 1]); title('Lowpass Reconstruction Filter');
subplot (223) ;

stem (HiD, 'markerfacecolor', [0 O 1]); title('Highpass Decomposition Filter');
subplot (224) ;

stem (HiR, 'markerfacecolor', [0 0 1]); title('Highpass Reconstruction Filter');
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Visualize the real-valued Morlet wavelet. There is no associated scaling function.

figure;

[psi,xval] = wavefun('morl');

plot(xval,psi, "linewidth', 2);

title('S\psi(x) = e*{-x"2/2} \cos{ (5x)}S$', "Interpreter', 'latex', ...
'fontsize',14);

3-6



Visualizing Wavelets, Wavelet Packets, and Wavelet Filters

2 ip

(5x)

041

0.2

U(x) = e /2 cos

- \

Obtain the first 4 wavelet packets for the Daubechies least-asymmetric wavelet with 4
vanishing moments, sym4.

[wpws,x] = wpfun('sym4',4,10);
for nn = l:size(wpws,1)

end

subplot (3,2,nn)
plot (x,wpws (nn, :)); axis tight;
title(['W',num2str (nn-1)1);
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Continuous Wavelet Analysis

Continuous Wavelet Analysis

This example shows how to perform time-frequency analysis using the continuous
wavelet transform (CWT). Continuous wavelet analysis provides a time-scale/time-
frequency analysis of signals and images. The Wavelet Toolbox™ software has both
command line and interactive functionality to support continuous wavelet analysis of 1-D
signals.

Construct a signal consisting of two sinusoids with frequencies of 100 and 50 Hz. The
support of the two sinusoids is disjoint. The 100-Hz sine wave begins at t = 0 and has a
duration of 1 second. The 50-Hz sinusoid begins at three seconds and has a duration of
two seconds.

Fs = 1000;
t = linspace(0,5,5e3);
X cos (2*pi*100*t) .* (t<l)+cos (2*pi*50*t) .* (3<t)+0.3*randn (size(t));

Obtain the CWT and plot its scalogram

cwt (x,Fs);
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Continuous Wavelet Transform and Inverse Continuous Wavelet Transform

Continuous Wavelet Transform and Inverse Continuous Wavelet
Transform

This example shows how to use the continuous wavelet transform (CWT) and inverse
CWT.

CWT of Sine Waves and Impulses

Create and plot a signal consisting of two disjoint sine waves with frequencies of 100 and
50 Hz punctuated by two impulses. The sampling frequency is 1 kHz and the total signal
duration is one second. The 100-Hz sine wave occurs over the first 250 milliseconds of the
data. The 50-Hz sinusoid occurs over the last 500 milliseconds. The impulses occur at 650

and 750 milliseconds. The signal also has N{0.0.17) additive white Gaussian noise. The
impulse at 650 milliseconds is visible, but the impulse at 750 milliseconds is not clearly
evident in the time-domain data.

Fs = 1000;

t = 0:1/Fs:1-1/Fs;
X = zeros(size(t));
x([625,750]) = 2.5;

X = x+ cos (2*pi*100*t) .* (£t<0.25)+cos (2*pi*50*t) .* (£>=0.5)+...
0O.1*randn (size(t));

plot (t.*1000, x)

grid on;

xlabel ('msec'); ylabel ('Amplitude');
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Obtain and plot the CWT using the default analytic Morse wavelet.

[cfs,f] = cwt(x,1000);
contour (t.*1000, £,abs (cfs));
xlabel ('msec'); ylabel ('Hz');
grid on;



Continuous Wavelet Transform and Inverse Continuous Wavelet Transform
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The CWT moduli correctly show the supports of the disjoint sinusoids and the locations
of the impulses at 650 and 750 milliseconds. In the CWT moduli, the impulse at 750
milliseconds is clearly visible. This is especially true if you plot just the finest-scale
wavelet coefficients.

plot (t.*1000,abs(cfs(1l,:)))

grid on

title('Fine-Scale Wavelet Coefficient Moduli')
xlabel ('msec'")
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Frequency-Localized Inverse CWT

Using the inverse CWT you can construct frequency-localized approximations to events
in your time series. Use the inverse CW'T to obtain an approximation to the 100-Hz
sinusoid in the previous example.

xrec = icwt(cfs,f, [90 110]);

plot (t,x);

hold on;

plot(t,xrec,'r'");

legend ('Original Signal', 'Inverse CWT Approximation',...
'Location', "NorthEast"') ;

grid on;
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If you zoom in on the plot, you see the 100-Hz component is well approximated but the
50-Hz component has been removed.
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Discrete Wavelet Analysis

3-16

Wavelet Toolbox software enables you to analyze signals, images, and 3-D data using
orthogonal and biorthogonal critically-sampled discrete wavelet analysis. Critically-
sampled discrete wavelet analysis is also known as decimated discrete wavelet analysis.
Decimated discrete wavelet analysis is most appropriate for data compression, denoising,
and the sparse representation of certain classes of signals and images.

In decimated discrete wavelet analysis, the scales and translations are dyadic.

You can perform 1-D, 2-D, and 3-D decimated discrete wavelet analysis using the
interactive tool by entering waveletAnalyzer at the command line and clicking
Wavelet 1-D, Wavelet 2-D, or Wavelet 3-D.

1-D Wavelet Denoising

This example shows how to denoise a signal using discrete wavelet analysis.

Create a reference signal.

len = 2711;
h=1[4 -5 3 -4 5 -4.2 2.1 4.3 -=3.1 5.1 -4.2];
t = (0.1 0.13 0.15 0.23 0.25 0.40 0.44 0.5 0.76 0.78 0.81];
h = abs(h);
w = 0.01*[0.5 0.50.61 1 3110.50.80.5];
tt = linspace(0,1,1len); xref = zeros(l,len);
for j=1:11

xref = xref + ( h(3) ./ (1+ ((tt=t(3))/w(J))."4));
end

Add zero-mean white Gaussian noise with a variance of 0.25.

rng default;
x = xref + 0.5*randn (size (xref));
plot(x); set(gca, 'xlim', [1 2048]);
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Denoise the signal down to level 3 using the Daubechies least asymmetric wavelet with 4
vanishing moments. Use the universal threshold selection rule of Donoho and Johnstone
with soft thresholding based on the DWT coefficients at level 1. Use the periodization
signal extension mode — dwtmode ('per'). Plot the result along with the reference
signal for comparision.

dwtmode ('per'") ;

| A I I O O

! WARNING: Change DWT Extension Mode !
| T L O I A I

KAKA AR A IR AIA A A I A AR AR A A XA A KA A A A AR A A AR A A KAk
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**  DWT Extension Mode: Periodization **
R b i b I b I I b b b b b b b b b b b b b b b I b b b b b b I b b b 2 b b b

[xd,cxd, 1xd] = wden(x, 'sgtwolog','s"',"'sln',4,"'syméd");
plot (xd);

set (gca, 'x1lim', [1 2048]); hold on;

plot(xref, 'r');

_1 i i i i i i i i i i

200 400 600 800 1000 1200 1400 1600 1800 2000

2-D Decimated Discrete Wavelet Analysis

This example shows how to obtain the 2-D DWT of an input image.
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Discrete Wavelet Analysis

Load and display the image. The image consists of vertical, horizontal, and diagonal
patterns.

load tartan;
imagesc (X); colormap (gray);

20

40

&0

80

100

120

20 40 60 80 100 120

Obtain the 2-D DWT at level 1 using the biorthogonal B-spline wavelet and scaling filters
with 2 vanishing moments in the analysis filters and 4 vanishing moments in the
synthesis filters. Extract the horizontal, vertical, and diagonal wavelet coefficients and
the approximation coefficients. Display the results.

[C,S] = wavedec2 (X,1, 'bior2.4");
[H,V,D] = detcoef2('all',C,S,1);
A = appcoef2(C,S, 'bior2.4");
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3 Getting Started with Wavelet Analysis

subplot (221) ;

imagesc (A); title('Approximation Level 1');
colormap (gray) ;

subplot (222) ;

imagesc (H); title('Horizontal Details');
subplot (223) ;

imagesc (V); title('Vertical Details');
subplot (224) ;

imagesc(D); title('Diagonal Details');

Horizontal Details

20 40

You see that the wavelet details are sensitive to particular orientations in the input
image. The approximation coefficients are a lowpass approximation to the original image.
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Nondecimated Discrete Wavelet Analysis

This example shows how to obtain the nondecimated (stationary) wavelet transform of a
noisy frequency-modulated signal.

Load the noisy Doppler signal and obtain the stationary wavelet transform down to level
4.

load noisdopp;
swc = swt (noisdopp,4, 'sym8'");

Plot the original signal and the level 1 and 3 wavelet coefficients. Plot the level 4
approximation.

subplot (411)

plot (noisdopp) ;

subplot (412) ;

plot(swc(l,:)); ylabel('D1l");
set (gca, 'ytick', [1);

subplot (413)

plot(swc(3,:)); ylabel('D3");
set (gca, 'ytick', [1);

subplot (414) ;

plot(swc(5,:)); ylabel ('A4d");
set (gca, 'ytick', [1);
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Obtain the 2-D nondecimated wavelet transform of an image. Use the Daubechies least
asymmetric wavelet, sym4, and obtain the multiresolution analysis down to level 3. Load

the image. Use wcodemat to scale the matrix for display.

load tartan;
nbcol = size(map,1);
cod X = wcodemat (X, nbcol);

The wavelet and approximation coefficients at each level are equal in length to the input
signal. The additive noise is almost entirely localized in the level one detail coefficients.
The level 3 details coefficients captures the high-frequency oscillations at the beginning
of the Doppler signal. The level 4 approximation coefficients are a lowpass approximation
to the Doppler signal.



Discrete Wavelet Analysis

Obtain the nondecimated multiresolution analysis down to level 3.

[ca,chd,cvd,cdd] = swt2(X,3,'"'symd"');

Display the original image and the approximation and detail coefficients at each level.

subplot (221)

image (cod X)
title('Original image');
colormap (map)

for k = 1:3
cod ca = wcodemat
cod chd = wcodemat
cod cvd = wcodemat (cvd(:,:,k),nbcol);
cod cdd = wcodemat (cdd(:,:,k),nbcol);
decl = [cod ca,cod chd;cod cvd,cod cdd];

ca(:,:,k),nbcol);
chd(:, :,k),nbcol);

subplot (2,2, k+1)
image (decl)

title(['SWT dec.: approx. ',
'and det. coefs (lev. ',num2str(k),')"'1);
colormap (gray)

end
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Original image SWT dec.: approx. and det. coefs (lev. 1)
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Lifting

Lifting

This example shows how to use lifting on a 1-D signal.

Create a 1-D signal that is piecewise constant over 2 samples. Add N(0,0.17) 1sise to the

signal.

x=[11122 -3.5-3.54.3 4.3 66 -4.5-4.52.22.2 -1.5-1.5];
x = repmat (x,1,64);

rng default;

x = x+ 0.l1*randn (size (x));

Plot the signal and zoom in on the first 100 samples to visualize the correlation in
neighboring samples.

plot (x);
set(gca, "xlim', [0 100]);
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90 100

Use the lazy wavelet to obtain the even and odd polyphase components of the signal.

LS = liftwave('lazy');
[A,D] = lwt(x,LS);

If you plot the detail (wavelet) coefficients in D, you see that this transform has not
decorrelated the signal. The wavelet coefficients look very much like the signal.

Add a dual lifting step that subtracts the even-indexed coefficient from the odd-

coefficient one sample later, *' n+ 1) —x(2In)

els = {'d',-1,0};
LSnew = addlift (LS,els);



Lifting

Because the signal is piecewise constant over consecutive samples with additive noise,
the new dual lifting step should result in wavelet coefficients small in absolute value. In
this case, the wavelet transform does decorrelate the data. Verify this by finding the
approximation and detail coefficients with the new dual lifting step.

[A,D] = 1wt (x,LSnew);

If you plot the detail (wavelet) coefficients, you see that the wavelet coefficients no longer
resemble the original signal.

The approximation coefficients, A, of the previous transform constitute the even
polyphase component of the signal. Therefore, the coefficients are affected by aliasing.
Use a primal lifting step to update the approximation coefficients and reduce aliasing.
The primal step replaces the approximation coefficients by

xX2n) +1/2{x(2n4+ 1) — x(2n)) 2n+|-'

, which is equal to the average of * 120) and ¥
The averaging is a lowpass filtering, which helps to reduce aliasing.

els = {'p',1/2, 0};
LSnew = addlift (LSnew,els);

Use the updated lifting scheme to obtain the wavelet transform of the input signal.

[A,D] = 1wt (x,LSnew);

Add the appropriate scaling to ensure perfect reconstruction. Obtain the approximation
and wavelet coefficients using lifting and reconstruct the signal using i 1wt. Verify
perfect reconstruction.

LSnew (end, :) = {sqrt(2),sqrt(2)/2,[1}:
[A,D] = lwt(x,LSnew);

x1 = ilwt (A, D, LSnew);

max (abs (x1-x))

ans = 1.7764e-15

The preceding example designed a wavelet, which effectively removed a zero-th order
polynomial (constant). If the behavior of the signal is better represented by a higher-
order polynomial, you can design a dual wavelet with the appropriate number of
vanishing moments to decorrelate the signal.

Use the lifting scheme to design a wavelet with 2 vanishing moments. A dual wavelet
with 2 vanishing moments decorrelates a signal with local behavior approximated by a
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first-order polynomial. Create a signal characterized by first-order polynomial behavior

with additive V(0 0.25%) noise.

y=[100400-100200700-400100 =31
x1 = 1:(21/1024) :22-(21/1024);

yl = interpl(1:22,y,x1, 'linear');

rng default;

yl = y1+0.25*randn (size(yl));

plot(xl,yl); set(gca, 'xlim', [1 22]);

i 1

) WW \ it

In this case, the wavelet coefficients should remove a first-order polynomial. If the signal

2n4+1)

value at an odd index, *' , 1s well approximated by a first-order polynomial fitted

3-28



Lifting

1/2{x(2n) +x(2n+2))

to the surrounding sample values, then should provide a good fit

for ¥20+ 1) 1 other words, *' 2n+ 1) ghould be the midpoint between *' 2n) and
x(2n+12)

Tt follows that X2 + 1) = 1/2(x(2n) + x(2n + 2] o,5u1d decorrelate the signal.

Start with the lazy wavelet transform and add a dual lifting step which models the
preceding equation.

LS = liftwave('lazy');
els = {'d', [-1/2 -1/2],1};
LSnew = addlift (LS,els);

Use the lifting scheme to obtain the approximation and detail coefficients and plot the
result.

[A,D] = lwt(yl,LSnew);

subplot (211)

plot (A); set(gca, 'xlim',[1 512]);
title ('Approximation Coefficients');
subplot (212)

plot(D); set(gca, 'xlim',[1 512]);
title('Detail Coefficients');
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Approximation Coefficients
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You see that the wavelet coefficients appear to only contain noise, while the
approximation coefficients represent a denoised version of the original signal. Because
the preceding transform uses only the even polyphase component for the approximation
coefficients, you can reduce aliasing by adding a primal lifting step. Finally, add the
normalization constants to produce a perfect reconstruction filter bank.

Obtain the discrete wavelet transform with the new lifting scheme and plot the results.

els = {'p',[1/4 1/41,0};

LSnew = addlift (LSnew,els);

LSnew (end, :) = {sqrt(2),sqrt(2)/2,[1};
[A,D] = lwt(yl,LSnew);

subplot (211)

plot(A); set(gca, 'xlim',[1 5121);
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title ('Approximation Coefficients');
subplot (212)

plot(D); set(gca, 'xlim', [l 5121);
title('Detail Coefficients');

Approximation Coefficients
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Demonstrate that you have designed a perfect reconstruction filter bank.

y2 = ilwt (A,D,LSnew);
max (abs (y2-y1))

ans = 8.8818e-16
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Critically Sampled Wavelet Packet Analysis

3-32

This example shows how to obtain the wavelet packet transform of a 1-D signal. The
example also demonstrates that frequency ordering is different from Paley ordering.

Create a signal consisting of a sine wave with a frequency of Tm/8 radians/sample in
additive white Gaussian N(0,1/4) noise. The sine wave occurs between samples 128 and
512 of the signal.

rng default;

dwtmode ('per'") ;

n = 0:1023;

indices = (n>127 & n<=512);

x = cos(7*pi/8*n) .*indices+0.5*randn (size(n));

...
! WARNING: Change DWT Extension Mode !
EEREEEE NN

hhkkhk Ak hkhkhkhkhkhkhkhkhkhAhrhkkhkhkhkhkhkkhkkhkhrhrhkkhkhkhhhkhkhhhkhkkxx*

** DWT Extension Mode: Periodization **
PR I I I I b i I b e S I e I b I e b b b I b b b b b b b

Obtain the wavelet packet transform down to level 2 using the Daubechies least
asymmetric wavelet with 4 vanishing moments. Plot the wavelet packet tree.

T = wpdec(x,2, "syméd"');
plot (T);



Critically Sampled Wavelet Packet Analysis
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Tree Decomposition data for node: 0 or (0,0).

Find the Paley and frequency ordering of the terminal nodes.
[tn pal,tn freq] = otnodes(T);

tn_freq contains the vector [3 4 6 5], which shows that the highest frequency

interval, [3 /4, "'_]', is actually node 5 in the Paley-ordered wavelet packet tree.
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Click on node (2,2) in the wavelet packet tree to see that the frequency ordering correctly
predicts the presence of the sine wave.

Bl Figure 1 o= =
File Edit ‘iew Insert Tools Desktop  Window Help  Mode Label Mode Action u
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Tree Decomposition data for node: (5] ar [
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The wavelet packet transform of a 2-D image yields a quarternary wavelet packet tree.
Load an example image. Use the biorthogonal B-spline wavelet with 3 vanishing
moments in the reconstruction wavelet and 5 vanishing moments in the decomposition
wavelet. Plot the resulting quartenary wavelet packet tree.
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load tartan;
T = wpdec2(X,2,'bior3.5");
plot(T);
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Tree Decomposition
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